Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-8241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the representativity of NH3 measurements influenced by boundary-layer dynamics and the turbulent dispersion of a nearby emission source
Department of Meteorology and Air Quality, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
Margreet C. van Zanten
Department of Meteorology and Air Quality, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
Bart J. H. van Stratum
Department of Meteorology and Air Quality, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
Jordi Vilà-Guerau de Arellano
Department of Meteorology and Air Quality, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
Related authors
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, Margreet van Zanten, and Thomas van Goethem
Atmos. Meas. Tech., 16, 529–546, https://doi.org/10.5194/amt-16-529-2023, https://doi.org/10.5194/amt-16-529-2023, 2023
Short summary
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
Mary Rose Mangan, Jordi Vilà-Guerau de Arellano, Bart J. H. van Stratum, Marie Lothon, Guylaine Canut-Rocafort, and Oscar K. Hartogensis
Atmos. Chem. Phys., 25, 8959–8981, https://doi.org/10.5194/acp-25-8959-2025, https://doi.org/10.5194/acp-25-8959-2025, 2025
Short summary
Short summary
Using observations and high-resolution turbulence modeling, we examine the influence of irrigation-driven surface heterogeneity on the atmospheric boundary layer (ABL). We use a multi-scale approach for characterizing surface heterogeneity to explore how its influence on the ABL within a grid cell would change with higher-resolution models. We find that the height of the ABL is variable across short distances and that the surface heterogeneity is felt least strongly in the middle of the ABL.
Dieu Anh Tran, Jordi Vilà-Guerau de Arellano, Ingrid T. Luijkx, Christoph Gerbig, Michał Gałkowski, Santiago Botía, Kim Faassen, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2025-2351, https://doi.org/10.5194/egusphere-2025-2351, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Analysis of CH4 data (2010–2021) from ZOTTO in Central Siberia shows an increase in the summer diurnal amplitude, driven by nighttime emissions. These trends correlate with rising soil temperature and moisture, especially in late summer. Peaks in 2012, 2016, and 2019 emission link to wildfires and wetland activity. Findings suggest wetlands as key CH4 sources and underscore the need for ongoing high-resolution monitoring in this region.
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025, https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Short summary
We introduce a new simulation platform based on the Dutch Atmospheric Large-Eddy Simulation (DALES) to simulate carbon dioxide (CO2) emissions and their dispersion in turbulent environments at a hectometer resolution. This model incorporates both anthropogenic emission inventories and online ecosystem fluxes. Simulation results for the main urban area in the Netherlands demonstrate the strong potential of DALES to improve CO2 emission modeling and to support mitigation strategies.
Jordi Vilà-Guerau de Arellano, Roderick Dewar, Kim A. P. Faassen, Teemu Hölttä, Remco de Kok, Ingrid T. Luijkx, and Timo Vesala
EGUsphere, https://doi.org/10.5194/egusphere-2025-2705, https://doi.org/10.5194/egusphere-2025-2705, 2025
Short summary
Short summary
This study explores how oxygen moves through tiny pores in leaves, especially when water vapor is also flowing out. We show that under common conditions, oxygen can move from the leaf to the air even when its concentration is higher outside – a surprising effect. Our findings help explain oxygen exchange in still air and support better models of plant–atmosphere interactions.
Marc Castellnou Ribau, Mercedes Bachfischer, Marta Miralles Bover, Borja Ruiz, Laia Estivill, Jordi Pages, Pau Guarque, Brian Verhoeven, Zisoula Ntasiou, Ove Stokkeland, Chiel Van Herwaeeden, Tristan Roelofs, Martin Janssens, Cathelijne Stoof, and Jordi Vilà-Guerau de Arellano
EGUsphere, https://doi.org/10.5194/egusphere-2025-1923, https://doi.org/10.5194/egusphere-2025-1923, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Firefighter entrapments can occur when wildfires escalate suddenly due to fire-atmosphere interactions. This study presents a method to analyze this in real-time using two weather balloon measurements: ambient and in-plume conditions. Researchers launched 156 balloons during wildfire seasons in Spain, Chile, Greece, and the Netherlands. This methodology detects sudden changes in fire behavior by comparing ambient and in-plume data, ultimately enhancing research on fire-atmosphere interactions.
Tycho Jongenelen, Margreet van Zanten, Enrico Dammers, Roy Wichink Kruit, Arjan Hensen, Leon Geers, and Jan Willem Erisman
Atmos. Chem. Phys., 25, 4943–4963, https://doi.org/10.5194/acp-25-4943-2025, https://doi.org/10.5194/acp-25-4943-2025, 2025
Short summary
Short summary
This article compares three ammonia (NH3) deposition models in a dune ecosystem and investigates the uncertainty of these models. The Zhang model aligned best with the measurements, whereas the DEPAC (DEPosition of Acidifying Compounds) and Massad models overestimated and underestimated the NH3 deposition respectively. The study found that NH3 exchange with wet plant leaves was an important but uncertain process. It offers recommendations to improve future models and suggests measurements to lower the existing uncertainty.
Sreehari Kizhuveettil, Jordi Vila-Guerau de Arellano, Martina Krämer, Armin Afchine, Luiz A. T. Machado, Martin Zöger, and Wiebke Frey
EGUsphere, https://doi.org/10.5194/egusphere-2025-1637, https://doi.org/10.5194/egusphere-2025-1637, 2025
Short summary
Short summary
Aircraft measurements are used to investigate high-altitude downdrafts in tropical deep convective clouds. The cloud water present in the downdrafts and its intensity do not show any correlation. Surprisingly, downdrafts occurred in supersaturated regions, contradicting the classical view of subsaturated downdrafts. Up- and downdrafts of similar strength show similar particle size distributions. These findings shed new light on the interplay between deep convection dynamics and microphysics.
Robbert Petrus Johannes Moonen, Getachew Agmuas Adnew, Jordi Vilà-Guerau de Arellano, Oscar Karel Hartogensis, David Joan Bonell Fontas, Shujiro Komiya, Sam P. Jones, and Thomas Röckmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-452, https://doi.org/10.5194/egusphere-2025-452, 2025
Short summary
Short summary
Understory ejections are distinct turbulent features emerging in prime tall forest ecosystems. We share a method to isolate understory ejections based on H2O-CO2 anomalie quadrants. From these, we calculate the flux contributions of understory ejections and all flux quadrants. In addition we show that a distinctly depleted isotopic composition can be found in the ejected water vapour. Finally, we explored the role of clouds as a potential trigger for understory ejections.
Leon Geers, Ruud Janssen, Gudrun Thorkelsdottir, Jordi Vilà-Guerau de Arellano, and Martijn Schaap
EGUsphere, https://doi.org/10.5194/egusphere-2025-426, https://doi.org/10.5194/egusphere-2025-426, 2025
Short summary
Short summary
High-resolution data on reactive nitrogen deposition are needed to inform cost-effective policies. Here, we describe the implementation of a dry deposition module into a large eddy simulation code. With this model, we are able to represent the turbulent exchange of tracers at the hectometer resolution. The model calculates the dispersion and deposition of NOx and NH3 in great spatial detail, clearly showing the influence of local land use patterns.
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo del Río
Hydrol. Earth Syst. Sci., 29, 109–125, https://doi.org/10.5194/hess-29-109-2025, https://doi.org/10.5194/hess-29-109-2025, 2025
Short summary
Short summary
Water resources are fundamental for the social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligate us to find new water resources. Fog harvesting (FH) emerges as a complementary resource in regions where it is abundant but untapped. This research proposes a model to estimate FH potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where FH could be a viable water source.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Kim A. P. Faassen, Jordi Vilà-Guerau de Arellano, Raquel González-Armas, Bert G. Heusinkveld, Ivan Mammarella, Wouter Peters, and Ingrid T. Luijkx
Biogeosciences, 21, 3015–3039, https://doi.org/10.5194/bg-21-3015-2024, https://doi.org/10.5194/bg-21-3015-2024, 2024
Short summary
Short summary
The ratio between atmospheric O2 and CO2 can be used to characterize the carbon balance at the surface. By combining a model and observations from the Hyytiälä forest (Finland), we show that using atmospheric O2 and CO2 measurements from a single height provides a weak constraint on the surface CO2 exchange because large-scale processes such as entrainment confound this signal. We therefore recommend always using multiple heights of O2 and CO2 measurements to study surface CO2 exchange.
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
Robbert P. J. Moonen, Getachew A. Adnew, Oscar K. Hartogensis, Jordi Vilà-Guerau de Arellano, David J. Bonell Fontas, and Thomas Röckmann
Atmos. Meas. Tech., 16, 5787–5810, https://doi.org/10.5194/amt-16-5787-2023, https://doi.org/10.5194/amt-16-5787-2023, 2023
Short summary
Short summary
Isotope fluxes allow for net ecosystem gas exchange fluxes to be partitioned into sub-components like plant assimilation, respiration and transpiration, which can help us better understand the environmental drivers of each partial flux. We share the results of a field campaign isotope fluxes were derived using a combination of laser spectroscopy and eddy covariance. We found lag times and high frequency signal loss in the isotope fluxes we derived and present methods to correct for both.
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, Margreet van Zanten, and Thomas van Goethem
Atmos. Meas. Tech., 16, 529–546, https://doi.org/10.5194/amt-16-529-2023, https://doi.org/10.5194/amt-16-529-2023, 2023
Short summary
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
Kim A. P. Faassen, Linh N. T. Nguyen, Eadin R. Broekema, Bert A. M. Kers, Ivan Mammarella, Timo Vesala, Penelope A. Pickers, Andrew C. Manning, Jordi Vilà-Guerau de Arellano, Harro A. J. Meijer, Wouter Peters, and Ingrid T. Luijkx
Atmos. Chem. Phys., 23, 851–876, https://doi.org/10.5194/acp-23-851-2023, https://doi.org/10.5194/acp-23-851-2023, 2023
Short summary
Short summary
The exchange ratio (ER) between atmospheric O2 and CO2 provides a useful tracer for separately estimating photosynthesis and respiration processes in the forest carbon balance. This is highly relevant to better understand the expected biosphere sink, which determines future atmospheric CO2 levels. We therefore measured O2, CO2, and their ER above a boreal forest in Finland and investigated their diurnal behaviour for a representative day, and we show the most suitable way to determine the ER.
Micael Amore Cecchini, Marco de Bruine, Jordi Vilà-Guerau de Arellano, and Paulo Artaxo
Atmos. Chem. Phys., 22, 11867–11888, https://doi.org/10.5194/acp-22-11867-2022, https://doi.org/10.5194/acp-22-11867-2022, 2022
Short summary
Short summary
Shallow clouds (vertical extent up to 3 km height) are ubiquitous throughout the Amazon and are responsible for redistributing the solar heat and moisture vertically and horizontally. They are a key component of the water cycle because they can grow past the shallow phase to contribute significantly to the precipitation formation. However, they need favourable environmental conditions to grow. In this study, we analyse how changing wind patterns affect the development of such shallow clouds.
Felipe Lobos-Roco, Oscar Hartogensis, Francisco Suárez, Ariadna Huerta-Viso, Imme Benedict, Alberto de la Fuente, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 26, 3709–3729, https://doi.org/10.5194/hess-26-3709-2022, https://doi.org/10.5194/hess-26-3709-2022, 2022
Short summary
Short summary
This research brings a multi-scale temporal analysis of evaporation in a saline lake of the Atacama Desert. Our findings reveal that evaporation is controlled differently depending on the timescale. Evaporation is controlled sub-diurnally by wind speed, regulated seasonally by radiation and modulated interannually by ENSO. Our research extends our understanding of evaporation, contributing to improving the climate change assessment and efficiency of water management in arid regions.
Anja Ražnjević, Chiel van Heerwaarden, Bart van Stratum, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, and Maarten Krol
Atmos. Chem. Phys., 22, 6489–6505, https://doi.org/10.5194/acp-22-6489-2022, https://doi.org/10.5194/acp-22-6489-2022, 2022
Short summary
Short summary
Mobile measurement techniques (e.g., instruments placed in cars) are often employed to identify and quantify individual sources of greenhouse gases. Due to road restrictions, those observations are often sparse (temporally and spatially). We performed high-resolution simulations of plume dispersion, with realistic weather conditions encountered in the field, to reproduce the measurement process of a methane plume emitted from an oil well and provide additional information about the plume.
Carlos Román-Cascón, Marie Lothon, Fabienne Lohou, Oscar Hartogensis, Jordi Vila-Guerau de Arellano, David Pino, Carlos Yagüe, and Eric R. Pardyjak
Geosci. Model Dev., 14, 3939–3967, https://doi.org/10.5194/gmd-14-3939-2021, https://doi.org/10.5194/gmd-14-3939-2021, 2021
Short summary
Short summary
The type of vegetation (or land cover) and its status influence the heat and water transfers between the surface and the air, affecting the processes that develop in the atmosphere at different (but connected) spatiotemporal scales. In this work, we investigate how these transfers are affected by the way the surface is represented in a widely used weather model. The results encourage including realistic high-resolution and updated land cover databases in models to improve their predictions.
Felipe Lobos-Roco, Oscar Hartogensis, Jordi Vilà-Guerau de Arellano, Alberto de la Fuente, Ricardo Muñoz, José Rutllant, and Francisco Suárez
Atmos. Chem. Phys., 21, 9125–9150, https://doi.org/10.5194/acp-21-9125-2021, https://doi.org/10.5194/acp-21-9125-2021, 2021
Short summary
Short summary
We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano region of the Atacama Desert through a field experiment and regional modeling. Our results show that evaporation is controlled by two regimes: (1) in the morning by local conditions with low evaporation rates and low wind speed and (2) in the afternoon with high evaporation rates and high wind speed. Afternoon winds are connected to the regional Pacific Ocean–Andes flow.
Jordi Vilà-Guerau de Arellano, Patrizia Ney, Oscar Hartogensis, Hugo de Boer, Kevin van Diepen, Dzhaner Emin, Geiske de Groot, Anne Klosterhalfen, Matthias Langensiepen, Maria Matveeva, Gabriela Miranda-García, Arnold F. Moene, Uwe Rascher, Thomas Röckmann, Getachew Adnew, Nicolas Brüggemann, Youri Rothfuss, and Alexander Graf
Biogeosciences, 17, 4375–4404, https://doi.org/10.5194/bg-17-4375-2020, https://doi.org/10.5194/bg-17-4375-2020, 2020
Short summary
Short summary
The CloudRoots field experiment has obtained an open comprehensive observational data set that includes soil, plant, and atmospheric variables to investigate the interactions between a heterogeneous land surface and its overlying atmospheric boundary layer, including the rapid perturbations of clouds in evapotranspiration. Our findings demonstrate that in order to understand and represent diurnal variability, we need to measure and model processes from the leaf to the landscape scales.
Cited articles
Aan de Brugh, J. M. J., Henzing, J. S., Schaap, M., Morgan, W. T., van Heerwaarden, C. C., Weijers, E. P., Coe, H., and Krol, M. C.: Modelling the partitioning of ammonium nitrate in the convective boundary layer, Atmos. Chem. Phys., 12, 3005–3023, https://doi.org/10.5194/acp-12-3005-2012, 2012. a
Anys, M., Ullrich, B., Gager, M., and Pinterits, M.: European Union emission inventory report 1990–2018: under the UNECE Convention on Long-range Transboundary Air Pollution, Tech. Rep. TH-AL-20-013-EN-N, European Environment Agency, Kongens Nytorv 6, 1050 Copenhagen K, Denmark, https://www.eea.europa.eu/ds_resolveuid/c48fe5a189e5484095dcb509da927a36 (last access: 23 June 2022), 2020. a
Arabas, S., Axelsen, S., Attema, J., Beets, C., Boeing, S. J., Cuijpers, H., de Bruine, M., Chylik, J., van der Dussen, J., van Heerwaarden, C., Heus, T., Jansson, F., Jonker, H., Moene, A., Ouwersloot, H., van den Oord, G., de Roode, S., Neggers, R., Pedruzo, X., Siebesma, P., Sikma, M., van Stratum, B. J. H., Vilà-Guerau de Arellano, J., and van Zanten, M. C.: dalesteam/dales: DALES 4.2.1, Zenodo [code], https://doi.org/10.5281/zenodo.3759193, 2020. a, b
Ardeshiri, H., Cassiani, M., Park, S. Y., Stohl, A., Pisso, I., and Dinger, A. S.: On the Convergence and Capability of the Large-Eddy Simulation of Concentration Fluctuations in Passive Plumes for a Neutral Boundary Layer at Infinite Reynolds Number, Bound.-Lay. Meteorol., 176, 291–327,
https://doi.org/10.1007/s10546-020-00537-6, 2021. a
Barad, M. L.: Project Prairie Grass, a field program in diffusion, vol. 1, Tech. Rep. No. 59, vol. I, Report AFCRC-TR-58-235(I), Air Force Cambridge Research Labs, https://www.harmo.org/jsirwin/PGrassVolumeI.pdf (last access: 23 June 2022), 1958. a
Barbaro, E., Vilà-Guerau de Arellano, J., Ouwersloot, H. G., Schröter, J. S., Donovan, D. P., and Krol, M. C.: Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system, J. Geophys. Res.-Atmos., 119, 5845–5863, https://doi.org/10.1002/2013JD021237, 2014. a, b, c, d, e, f
Barbaro, E., Krol, M., and Vilà-Guerau de Arellano, J.: Numerical simulation of the interaction between ammonium nitrate aerosol and convective
boundary-layer dynamics, Atmos. Environ., 105, 202–211,
https://doi.org/10.1016/j.atmosenv.2015.01.048, 2015. a
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies, Environ. Sci. Pollut. R., 20, 8092–8131, https://doi.org/10.1007/s11356-013-2051-9, 2013. a, b
Berkhout, A. J. C., Swart, D. P. J., Volten, H., Gast, L. F. L., Haaima, M., Verboom, H., Stefess, G., Hafkenscheid, T., and Hoogerbrugge, R.: Replacing the AMOR with the miniDOAS in the ammonia monitoring network in the Netherlands, Atmos. Meas. Tech., 10, 4099–4120, https://doi.org/10.5194/amt-10-4099-2017, 2017. a
Boermans, G. M. F. and Erisman, J. W.: Meetstrategieontwikkeling voor het representativiteitsonderzoek als onderdeel van het additioneel meetprogramma ammoniak: fenomenologie van NH3 en meetritsimulaties, Tech. Rep. 222105001, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721, MA Bilthoven, the Netherlands,
http://hdl.handle.net/10029/255566 (last access: 23 June 2022), 1990. a
Cassiani, M., Bertagni, M., Marro, M., and Salizzoni, P.: Concentration
Fluctuations from Localized Atmospheric Releases, Bound.-Lay. Meteorol.,
177, 461–510, https://doi.org/10.1007/s10546-020-00547-4, 2020. a, b
Dosio, A. and Vilà-Guerau de Arellano, J.: Statistics of Absolute and Relative Dispersion in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study, J. Atmos. Sci., 63, 1253–1272, https://doi.org/10.1175/JAS3689.1, 2006. a, b, c, d
Dosio, A., Vilà-Guerau de Arellano, J., Holtslag, A. A. M., and Builtjes, P. J. H.: Dispersion of a Passive Tracer in Buoyancy- and Shear-Driven Boundary Layers, J. Appl. Meteorol., 42, 1116–1130,
https://doi.org/10.1175/1520-0450(2003)042<1116:DOAPTI>2.0.CO;2, 2003. a, b, c, d
Erisman, J. and Schaap, M.: The need for ammonia abatement with respect to
secondary PM reductions in Europe, Environ. Pollut., 129, 159–163,
https://doi.org/10.1016/j.envpol.2003.08.042, 2004. a
Erisman, J. W., Galloway, J. N., Seitzinger, S., Bleeker, A., Dise, N. B., Petrescu, A. M. R., Leach, A. M., and de Vries, W.: Consequences of human modification of the global nitrogen cycle, Philos. T. Roy. Soc. B, 368, 20130116, https://doi.org/10.1098/rstb.2013.0116, 2013. a
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+– –Na+– – –Cl−–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007. a
Fowler, D., Pitcairn, C. E. R., Sutton, M. A., Flechard, C., Loubet, B., Coyle, M., and Munro, R. C.: The mass budget of atmospheric ammonia in woodland within 1 km of livestock buildings, Environ. Pollut., 102, 343–348, https://doi.org/10.1016/S0269-7491(98)80053-5, 1998. a, b
Gailis, R. M., Hill, A., Yee, E., and Hilderman, T.: Extension of a fluctuating plume model of tracer dispersion to a sheared boundary layer and to a large array of obstacles, Bound.-Lay. Meteorol., 122, 577–607,
https://doi.org/10.1007/s10546-006-9118-9, 2007. a, b
Galmarini, S., Vilà-Guerau de Arellano, J., and Duynkerke, P.: The effect of micro-scale turbulence on the reaction rate in a chemically reactive plume, Atmos. Environ., 29, 87–95, https://doi.org/10.1016/1352-2310(94)00224-9, 1995. a, b
Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino, D., de Roode, S. R., and Vilà-Guerau de Arellano, J.: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications, Geosci. Model Dev., 3, 415–444, https://doi.org/10.5194/gmd-3-415-2010, 2010. a, b, c
Kljun, N., Kormann, R., Rotach, M. W., and Meixer, F. X.: Comparison of the
lagrangian footprint model LPDM-B with an analytical footprint model,
Bound.-Lay. Meteorol., 106, 349–355, https://doi.org/10.1023/A:1021141223386,
2003. a
Kulmala, M., Asmi, A., Lappalainen, H. K., Baltensperger, U., Brenguier, J.-L., Facchini, M. C., Hansson, H.-C., Hov, Ø., O'Dowd, C. D., Pöschl, U., Wiedensohler, A., Boers, R., Boucher, O., de Leeuw, G., Denier van der Gon, H. A. C., Feichter, J., Krejci, R., Laj, P., Lihavainen, H., Lohmann, U., McFiggans, G., Mentel, T., Pilinis, C., Riipinen, I., Schulz, M., Stohl, A., Swietlicki, E., Vignati, E., Alves, C., Amann, M., Ammann, M., Arabas, S., Artaxo, P., Baars, H., Beddows, D. C. S., Bergström, R., Beukes, J. P., Bilde, M., Burkhart, J. F., Canonaco, F., Clegg, S. L., Coe, H., Crumeyrolle, S., D'Anna, B., Decesari, S., Gilardoni, S., Fischer, M., Fjaeraa, A. M., Fountoukis, C., George, C., Gomes, L., Halloran, P., Hamburger, T., Harrison, R. M., Herrmann, H., Hoffmann, T., Hoose, C., Hu, M., Hyvärinen, A., Hõrrak, U., Iinuma, Y., Iversen, T., Josipovic, M., Kanakidou, M., Kiendler-Scharr, A., Kirkevåg, A., Kiss, G., Klimont, Z., Kolmonen, P., Komppula, M., Kristjánsson, J.-E., Laakso, L., Laaksonen, A., Labonnote, L., Lanz, V. A., Lehtinen, K. E. J., Rizzo, L. V., Makkonen, R., Manninen, H. E., McMeeking, G., Merikanto, J., Minikin, A., Mirme, S., Morgan, W. T., Nemitz, E., O'Donnell, D., Panwar, T. S., Pawlowska, H., Petzold, A., Pienaar, J. J., Pio, C., Plass-Duelmer, C., Prévôt, A. S. H., Pryor, S., Reddington, C. L., Roberts, G., Rosenfeld, D., Schwarz, J., Seland, Ø., Sellegri, K., Shen, X. J., Shiraiwa, M., Siebert, H., Sierau, B., Simpson, D., Sun, J. Y., Topping, D., Tunved, P., Vaattovaara, P., Vakkari, V., Veefkind, J. P., Visschedijk, A., Vuollekoski, H., Vuolo, R., Wehner, B., Wildt, J., Woodward, S., Worsnop, D. R., van Zadelhoff, G.-J., Zardini, A. A., Zhang, K., van Zyl, P. G., Kerminen, V.-M., S Carslaw, K., and Pandis, S. N.: General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales, Atmos. Chem. Phys., 11, 13061–13143, https://doi.org/10.5194/acp-11-13061-2011, 2011. a
Loubet, B., Cellier, P., Milford, C., and Sutton, M. A.: A coupled dispersion and exchange model for short-range dry deposition of atmospheric ammonia, Q. J. Roy. Meteor. Soc., 132, 1733–1763, https://doi.org/10.1256/qj.05.73, 2006. a
Meeder, J. and Nieuwstadt, F.: Large-eddy simulation of the turbulent dispersion of a reactive plume from a point source into a neutral atmospheric
boundary layer, Atmos. Environ., 34, 3563–3573,
https://doi.org/10.1016/S1352-2310(00)00124-2, 2000. a
Mensah, A. A., Holzinger, R., Otjes, R., Trimborn, A., Mentel, Th. F., ten Brink, H., Henzing, B., and Kiendler-Scharr, A.: Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009, Atmos. Chem. Phys., 12, 4723–4742, https://doi.org/10.5194/acp-12-4723-2012, 2012. a
Nemitz, E., Sutton, M. A., Wyers, G. P., Otjes, R. P., Mennen, M. G., van Putten, E. M., and Gallagher, M. W.: Gas-particle interactions above a Dutch heathland: II. Concentrations and surface exchange fluxes of atmospheric particles, Atmos. Chem. Phys., 4, 1007–1024, https://doi.org/10.5194/acp-4-1007-2004, 2004. a, b
Nieuwstadt, F.: A large-eddy simulation of a line source in a convective atmospheric boundary layer – I. Dispersion characteristics, Atmos. Environ. A-Gen., 26, 485–495, https://doi.org/10.1016/0960-1686(92)90331-E, 1992. a
Ouwersloot, H. G., Vilà-Guerau de Arellano, J., van Heerwaarden, C. C., Ganzeveld, L. N., Krol, M. C., and Lelieveld, J.: On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces, Atmos. Chem. Phys., 11, 10681–10704, https://doi.org/10.5194/acp-11-10681-2011, 2011. a, b
Ouwersloot, H. G., Moene, A. F., Attema, J. J., and Vilà-Guerau de Arellano, J.: Large-Eddy Simulation Comparison of Neutral Flow Over a Canopy:
Sensitivities to Physical and Numerical Conditions, and Similarity to Other
Representations, Bound.-Lay. Meteorol., 162, 71–89,
https://doi.org/10.1007/s10546-016-0182-5, 2017. a
Pino, D., Jonker, H., Vilà-Guerau de Arellano, J., and Dosio, A.: Role of Shear and the Inversion Strength During Sunset Turbulence Over Land:
Characteristic Length Scales, Bound.-Lay. Meteorol., 121, 537–556,
https://doi.org/10.1007/s10546-006-9080-6, 2006. a
Rannik, Ü., Aubinet, M., Kurbanmuradov, O., Sabelfeld, K. K., Markkanen, T., and Vesala, T.: Footprint Analysis For Measurements Over A Heterogeneous
Forest, Bound.-Lay. Meteorol., 97, 137–166,
https://doi.org/10.1023/A:1002702810929, 2000. a
Ražnjević, A., van Heerwaarden, C., van Stratum, B., Hensen, A., Velzeboer, I., van den Bulk, P., and Krol, M.: Technical note: Interpretation of field observations of point-source methane plume using observation-driven large-eddy simulations, Atmos. Chem. Phys., 22, 6489–6505, https://doi.org/10.5194/acp-22-6489-2022, 2022. a, b, c, d
Remmelink, G., van Middelkoop, J., Ouweltjes, W., and Wemmenhove, H.: Handboek melkveehouderij 2020/21, over the year 2019/20, no. 44 in Handboek/Wageningen Livestock Research, Wageningen Livestock Research, https://doi.org/10.18174/529557, 2020. a
RIVM: Landbouw, Emissiefactoren diercategorieën, Hoofdcategorie A: Rundvee, RIVM, https://www.infomil.nl/onderwerpen/landbouw/emissiearme-stalsystemen/emissiefactoren-per/map-staltypen/hoofdcategorie/,
last access: 28 January 2021. a
Sauter, F., van Zanten, M., van der Swaluw, E., Aben, J., de Leeuw, F., and van Jaarsveld, H.: The OPS-model: Description of OPS 4.5.2, Tech. rep.,
National Institute for Public Health and the Environment (RIVM),
https://www.rivm.nl/media/ops/OPS-model.pdf (last access: 23 June 2022), 2018. a
Schaap, M., Timmermans, R. M. A., Roemer, M., Boersen, G. A. C., Builtjes, P. J. H., Sauter, F. J., Velders, G. J. M., and Beck, J. P.: The LOTOS–EUROS model: description, validation and latest developments, Int. J. Environ. Poll., 32, 270–290, https://doi.org/10.1504/IJEP.2008.017106, 2008. a
Schaug, J.: Quality assurance plane for EMEP, Tech. Rep. EMEP/CCC-Report 1/88, Norwegian Institute for Air Research,
https://projects.nilu.no/ccc/reports/cccr1-88.pdf (last access: 23 June 2022), 1988. a
Schulte, R., van Zanten, M., Rutledge-Jonker, S., Swart, D., Wichink
Kruit, R., Krol, M., van Pul, W., and Vilà-Guerau de Arellano, J.:
Unraveling the diurnal atmospheric ammonia budget of a prototypical
convective boundary layer, Atmos. Environ., 249, 118153,
https://doi.org/10.1016/j.atmosenv.2020.118153, 2021. a, b, c
Schulte, R., van Zanten, M., van Stratum, B., and Vilà-Guerau de Arellano, J.: DALES v4.2 modified for ammonia plume dispersion and blending-distance estimations, 4TU.ResearchData [code], https://doi.org/10.4121/19869478.v1, 2022. a, b, c
Shah, A., Pitt, J. R., Ricketts, H., Leen, J. B., Williams, P. I., Kabbabe, K., Gallagher, M. W., and Allen, G.: Testing the near-field Gaussian plume inversion flux quantification technique using unmanned aerial vehicle sampling, Atmos. Meas. Tech., 13, 1467–1484, https://doi.org/10.5194/amt-13-1467-2020, 2020. a, b
Shen, J., Chen, D., Bai, M., Sun, J., Coates, T., Lam, S. K., and Li, Y.: Ammonia deposition in the neighbourhood of an intensive cattle feedlot in Victoria, Australia, Sci. Rep., 6, 2045–2322, https://doi.org/10.1038/srep32793,
2016. a, b
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012. a
Smit, L. A. M. and Heederik, D.: Impacts of Intensive Livestock Production on
Human Health in Densely Populated Regions, GeoHealth, 1, 272–277,
https://doi.org/10.1002/2017GH000103, 2017. a
Sommer, S., Øtergård, H., Løfstrøm, P., Andersen, H., and Jensen, L.: Validation of model calculation of ammonia deposition in the neighbourhood of a poultry farm using measured NH3 concentrations and N deposition, Atmos. Environ., 43, 915–920, https://doi.org/10.1016/j.atmosenv.2008.10.045, 2009. a, b
Stokstad, E.: Nitrogen crisis threatens Dutch environment- and economy,
Science, 366, 1180–1181, https://doi.org/10.1126/science.366.6470.1180, 2019. a
Stolk, A., Noordijk, H., and van Zanten, M.: Drogedepositiemetingen van ammoniak in Natura 2000-gebied Bargerveen, Tech. Rep. 680029001, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721, MA Bilthoven, the Netherlands, https://rivm.openrepository.com/handle/10029/320523 (last access: 23 June 2022), 2014. a
Sutton, M. A., Erisman, J. W., Dentener, F., and Möller, D.: Ammonia in the environment: From ancient times to the present, Environ. Pollut., 156,
583–604, https://doi.org/10.1016/j.envpol.2008.03.013, 2008. a
Theobald, M. R., Løfstrøm, P., Walker, J., Andersen, H. V., Pedersen, P., Vallejo, A., and Sutton, M. A.: An intercomparison of models used to simulate the short-range atmospheric dispersion of agricultural ammonia emissions, Environ. Model. Softw., 37, 90–102,
https://doi.org/10.1016/j.envsoft.2012.03.005, 2012. a, b
van Bruggen, C., Bannink, A., Groenestein, C., Huijsmans, J., Lagerwerf, L., Luesink, H., Ros, M., Velthof, G., Vonk, J., and van der Zee, T.: Emissies naar lucht uit de landbouw berekend met NEMA voor 1990–2019, no. 203 in WOt-technical report, Wettelijke Onderzoekstaken Natuur & Milieu,
https://doi.org/10.18174/544296, 2021. a
van der Peet, G., Leenstra, F., Vermeij, I., Bondt, N., Puister, L., and van Os, J.: Feiten en cijfers over de Nederlandse veehouderijsectoren 2018, no. 1134 in Wageningen Livestock Research rapport, Wageningen Livestock Research, https://doi.org/10.18174/464128, 2018. a
van der Swaluw, E., de Vries, W., Sauter, F., Aben, J., Velders, G., and van Pul, A.: High-resolution modelling of air pollution and deposition over the Netherlands with plume, grid and hybrid modelling, Atmos. Environ., 155, 140–153, https://doi.org/10.1016/j.atmosenv.2017.02.009, 2017. a
van Jaarsveld, J.: The Operational Priority Substances model: Description and validation of OPS-Pro 4.1, Tech. Rep. 500045001, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721, MA Bilthoven, the Netherlands, https://www.rivm.nl/publicaties/operational-priority-substances-model (last access: 23 June 2022), 2004. a
Van Oss, R., Duyzer, J., and Wyers, P.: The influence of gas-to-particle
conversion on measurements of ammonia exchange over forest, Atmos.
Environ., 32, 465–471, https://doi.org/10.1016/S1352-2310(97)00280-X, 1998. a
van Zanten, M., Wichink Kruit, R., Hoogerbrugge, R., Van der Swaluw, E., and van Pul, W.: Trends in ammonia measurements in the Netherlands over the period 1993–2014, Atmos. Environ., 148, 352–360,
https://doi.org/10.1016/j.atmosenv.2016.11.007, 2017. a
van Zanten, M. C., Sauter, F. J., Wichink Kruit, R. J., van Jaarsveld, J. A., and van Pul, W. A. J.: Description of the DEPAC module: Dry deposition modelling with DEPAC-GCN2010, Tech. Rep. 680180001, National Institute for Public Health and the Environment (RIVM), https://www.rivm.nl/bibliotheek/rapporten/680180001.pdf (last access: 23 June 2022), 2010. a, b
Verzijlbergh, R. A., Jonker, H. J. J., Heus, T., and Vilà-Guerau de Arellano, J.: Turbulent dispersion in cloud-topped boundary layers, Atmos. Chem. Phys., 9, 1289–1302, https://doi.org/10.5194/acp-9-1289-2009, 2009. a
Vesala, T., Kljun, N., Rannik, Ü., Rinne, J., Sogachev, A., Markkanen, T., Sabelfeld, K., Foken, T., and Leclerc, M.: Flux and concentration footprint modelling: State of the art, Environ. Pollut., 152, 653–666,
https://doi.org/10.1016/j.envpol.2007.06.070, 2008. a
Vilà-Guerau de Arellano, J., Talmon, A. M., and Builtjes, P.: A chemically reactive plume model for the NO-NO2-O3 system, Atmos. Environ. A-Gen., 24, 2237–2246, https://doi.org/10.1016/0960-1686(90)90255-L, 1990. a
Vilà-Guerau de Arellano, J., Dosio, A., Vinuesa, J.-F., Holtslag, A. A. M., and Galmarini, S.: The dispersion of chemically reactive species in the atmospheric boundary layer, Meteorol. Atmos. Phys., 87, 23–38,
https://doi.org/10.1007/s00703-003-0059-2, 2004. a
Vonk, J., Arets, E., Bannink, A., van Bruggen, C., Groenestein, C., Huijsmans, J., Lagerwerf, L., Luesink, H., Ros, M., Schelhaas, M., van der Zee, T., and Velthof, G.: Referentieraming van emissies naar de lucht uit landbouw en landgebruik tot 2030, met doorkijk naar 2035: Achtergronddocument
bij de Klimaat- en Energieverkenning 2020, no. 1278 in Rapport/Wageningen
Livestock Research, Wageningen Livestock Research, https://doi.org/10.18174/533503,
2020. a
Vrieling, A. and Nieuwstadt, F.: Turbulent dispersion from nearby point sources – interference of the concentration statistics, Atmos. Environ., 37, 4493–4506, https://doi.org/10.1016/S1352-2310(03)00576-4, 2003. a, b
Wichink Kruit, R. and van Pul, W. A. J.: Ontwikkelingen in de stikstofdepositie, Rijksinstituut voor Volksgezondheid en Milieu (RIVM), RIVM briefrapport 2018-0117, https://doi.org/10.21945/RIVM-2018-0117, 2018. a
Wichink Kruit, R., Bleeker, A., Braam, M., van Goethem, T., Hoogerbrugge, R., Rutledge-Jonker, S., Stefess, G., Stolk, A., van der Swaluw, E., Voogt, M., and van Pul, A.: Op weg naar een optimale meetstrategie voor stikstof, Rijksinstituut voor Volksgezondheid en Milieu (RIVM), techreport, https://doi.org/10.21945/RIVM-2021-0118, 2021. a, b, c
Wichink Kruit, R. J., van Pul, W. A. J., Otjes, R. P., Hofschreuder, P.,
Jacobs, A. F. G., and Holtslag, A. A. M.: Ammonia fluxes and derived canopy
compensation points over non-fertilized agricultural grassland in The
Netherlands using the new GRadient Ammonia – High Accuracy –
Monitoring (GRAHAM), Atmos. Environ., 41, 1275–1287,
https://doi.org/10.1016/j.atmosenv.2006.09.039, 2007.
a
Wichink Kruit, R. J., van Pul, W. A. J., Sauter, F. J., van den Broek, M., Nemitz, E., Sutton, M. A., Krol, M., and Holtslag, A. A. M.: Modeling the surface–atmosphere exchange of ammonia, Atmos. Environ., 44, 945–957, https://doi.org/10.1016/j.atmosenv.2009.11.049, 2010. a
WUR: Dutch Farm Accountancy Data Network, agriculture, WUR,
https://www.agrimatie.nl/Binternet.aspx?ID=2&Bedrijfstype=2@3&SelectedJaren=2020&GroteKlassen=Alle+bedrijven,
last access: 21 June 2021. a
Short summary
We present a fine-scale simulation framework, utilizing large-eddy simulations, to assess NH3 measurements influenced by boundary-layer dynamics and turbulent dispersion of a nearby emission source. The minimum required distance from an emission source differs for concentration and flux measurements, from 0.5–3.0 km and 0.75–4.5 km, respectively. The simulation framework presented here proves to be a powerful and versatile tool for future NH3 research at high spatio-temporal resolutions.
We present a fine-scale simulation framework, utilizing large-eddy simulations, to assess NH3...
Altmetrics
Final-revised paper
Preprint