Articles | Volume 22, issue 2
Research article
18 Jan 2022
Research article |  | 18 Jan 2022

Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol

Dongwook Kim, Changmin Cho, Seokhan Jeong, Soojin Lee, Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Jose L. Jimenez, Rainer Volkamer, Donald R. Blake, Armin Wisthaler, Alan Fried, Joshua P. DiGangi, Glenn S. Diskin, Sally E. Pusede, Samuel R. Hall, Kirk Ullmann, L. Gregory Huey, David J. Tanner, Jack Dibb, Christoph J. Knote, and Kyung-Eun Min


Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2021-672', Anonymous Referee #1, 01 Oct 2021
  • RC2: 'Comment on acp-2021-672', Anonymous Referee #2, 09 Oct 2021
  • AC1: 'Response to the reviewers', Dongwook Kim, 29 Nov 2021

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Dongwook Kim on behalf of the Authors (29 Nov 2021)  Author's response    Author's tracked changes    Manuscript
ED: Publish as is (29 Nov 2021) by Jason Surratt
Short summary
CHOCHO was simulated using a 0-D box model constrained by measurements during the KORUS-AQ mission. CHOCHO concentration was high in large cities, aromatics being the most important precursors. Loss path to aerosol was the highest sink, contributing to ~ 20 % of secondary organic aerosol formation. Our work highlights that simple CHOCHO surface uptake approach is valid only for low aerosol conditions and more work is required to understand CHOCHO solubility in high-aerosol conditions.
Final-revised paper