Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7727-2022
https://doi.org/10.5194/acp-22-7727-2022
Research article
 | 
15 Jun 2022
Research article |  | 15 Jun 2022

Convective updrafts near sea-breeze fronts

Shizuo Fu, Richard Rotunno, and Huiwen Xue

Related authors

A large-eddy simulation study of deep-convection initiation through the collision of two sea-breeze fronts
Shizuo Fu, Richard Rotunno, Jinghua Chen, Xin Deng, and Huiwen Xue
Atmos. Chem. Phys., 21, 9289–9308, https://doi.org/10.5194/acp-21-9289-2021,https://doi.org/10.5194/acp-21-9289-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of wildfire smoke on Arctic cirrus formation – Part 2: Simulation of MOSAiC 2019–2020 cases
Albert Ansmann, Cristofer Jimenez, Daniel A. Knopf, Johanna Roschke, Johannes Bühl, Kevin Ohneiser, and Ronny Engelmann
Atmos. Chem. Phys., 25, 4867–4884, https://doi.org/10.5194/acp-25-4867-2025,https://doi.org/10.5194/acp-25-4867-2025, 2025
Short summary
Constraining aerosol–cloud adjustments by uniting surface observations with a perturbed parameter ensemble
August Mikkelsen, Daniel T. McCoy, Trude Eidhammer, Andrew Gettelman, Ci Song, Hamish Gordon, and Isabel L. McCoy
Atmos. Chem. Phys., 25, 4547–4570, https://doi.org/10.5194/acp-25-4547-2025,https://doi.org/10.5194/acp-25-4547-2025, 2025
Short summary
Investigating ice formation pathways using a novel two-moment multi-class cloud microphysics scheme
Tim Lüttmer, Peter Spichtinger, and Axel Seifert
Atmos. Chem. Phys., 25, 4505–4529, https://doi.org/10.5194/acp-25-4505-2025,https://doi.org/10.5194/acp-25-4505-2025, 2025
Short summary
Microphysics regimes due to haze–cloud interactions: cloud oscillation and cloud collapse
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
Atmos. Chem. Phys., 25, 3785–3806, https://doi.org/10.5194/acp-25-3785-2025,https://doi.org/10.5194/acp-25-3785-2025, 2025
Short summary
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
Shiye Huang, Jing Yang, Jiaojiao Li, Qian Chen, Qilin Zhang, and Fengxia Guo
Atmos. Chem. Phys., 25, 1831–1850, https://doi.org/10.5194/acp-25-1831-2025,https://doi.org/10.5194/acp-25-1831-2025, 2025
Short summary

Cited articles

Antonelli, M. and Rotunno, R.: Large-eddy simulation of the onset of the sea breeze, J. Atmos. Sci., 64, 4445–4457, https://doi.org/10.1175/2007JAS2261.1, 2007. 
Bechtold, P., Pinty, J.-P., and Mascart, P.: A numerical investigation of the influence of large-scale winds on sea-breeze- and inland-breeze-type Circulations, J. Appl. Meteor., 30, 1268–1279, 1991. 
Benjamin, T. B.: Gravity currents and related phenomena, J. Fluid Mech., 31, 209–248, 1968. 
Borne, K., Chen, D., and Nunez, M.: A method for finding sea breeze days under stable synoptic conditions and its application to the Swedish west coast, Int. J. Climatol., 18, 901–914, 1998. 
Bryan, G.: Cloud Model 1, NCAR [code], https://www2.mmm.ucar.edu/people/bryan/cm1/ (last access: 8 October 2021), 2022. 
Short summary
The convective updrafts near the sea-breeze fronts (SBFs) play important roles in initiating deep convection, but their characteristics are not well understood. By performing large-eddy simulations, we explain why the updrafts near the SBF are larger than but have similar strength to the updrafts ahead of the SBF. The results should also apply to other boundary-layer convergence zones similar to the SBF.
Share
Altmetrics
Final-revised paper
Preprint