Articles | Volume 22, issue 9
https://doi.org/10.5194/acp-22-6255-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-6255-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Source apportionment of carbonaceous aerosol using dual-carbon isotopes (13C and 14C) and levoglucosan in three northern Chinese cities during 2018–2019
Huiyizhe Zhao
State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center between IEECAS and Xi'an Jiaotong University, Xi'an 710061, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center between IEECAS and Xi'an Jiaotong University, Xi'an 710061, China
University of Chinese Academy of Sciences, Beijing 100049, China
Shaanxi Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, Xi'an 710061, China
Weijian Zhou
CORRESPONDING AUTHOR
State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center between IEECAS and Xi'an Jiaotong University, Xi'an 710061, China
University of Chinese Academy of Sciences, Beijing 100049, China
Sen Wang
Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
Xue Feng
Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
Shugang Wu
State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center between IEECAS and Xi'an Jiaotong University, Xi'an 710061, China
Xuefeng Lu
State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center between IEECAS and Xi'an Jiaotong University, Xi'an 710061, China
Hua Du
State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center between IEECAS and Xi'an Jiaotong University, Xi'an 710061, China
Related authors
No articles found.
Pingyang Li, Boji Lin, Zhineng Cheng, Jing Li, Jun Li, Duohong Chen, Tao Zhang, Run Lin, Sanyuan Zhu, Jun Liu, Yujun Lin, Shizhen Zhao, Guangcai Zhong, Zhenchuan Niu, Ping Ding, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1931, https://doi.org/10.5194/egusphere-2025-1931, 2025
Short summary
Short summary
Our study indicates fossil fuel CO2 (CO2ff) reductions in Chinese megacities via atmospheric Δ(14CO2) and δ(13CO2) measurements, driven by coal-to-gas transitions and combustion efficiency improvement. Three-decade data show steeper declined urban RCO/CO2ff ratios than inventory estimates, implying underestimation of efficiency improvements and CO reductions. Integrating top-down observations with inventories is critical to track policy-driven emission shifts and optimize co-benefit strategies.
Cited articles
Aggarwal, S. G. and Kawamura, K.: Molecular distributions and stable
carbon isotopic compositions of dicarboxylic acids and related compounds in
aerosols from Sapporo, Japan: Implications for photochemical aging during
long-range atmospheric transport, J. Geophys. Res, 113, D14301,
https://doi.org/10.1029/2007JD009365, 2008.
Agnihotri, R., Mandal, T. K., Karapurkar, S. G., Naja, M., Gadi, R.,
Ahammmed, Y. N., Kumar, A., Saud, T., and Saxena, M.: Stable carbon and
nitrogen isotopic composition of bulk aerosols over India and northern
Indian Ocean, Atmos. Environ., 45, 2828–2835,
https://doi.org/10.1016/j.atmosenv.2011.03.003, 2011.
Andersson, A., Deng, J. J., Du, K., Zheng, M., Yan, C. Q., Sköld, M., and Gustafsson, Ö: Regionally-varying combustion sources of the January 2013 severe haze events over eastern China, Environ. Sci. Technol., 49, 2038–2043, https://doi.org/10.1021/es503855e, 2015.
Bachar, A., Markus-Shi, J., Regev, L., Boaretto, E., and Klein, T.: Tree
rings reveal the adverse effect of water pumping on protected riparian
Platanus orientalis tree growth, Forest Ecol. Manag., 458, 117784,
https://doi.org/10.1016/j.foreco.2019.117784, 2020.
Barletta, B., Meinardi, S., Rowland, F. S., Chan, C., Wang, X. M., Zou, S.
C., Chan, L., and Blake, D. R.: Volatile organic compounds in 43 Chinese
cities, Atmos. Environ., 39, 5979–5990, https://doi.org/10.1016/j.atmosenv.2005.06.029, 2005.
BJMBS (Beijing Municipal Bureau Statistics): Beijing Statistical
Yearbook-2020, China Statistics press, http://nj.tjj.beijing.gov.cn/nj/main/2020-tjnj/zk/indexch.htm (last
access: 20 April 2022), 2020 (in Chinese).
Cachier, H., Buat Menard, P., Fontugne, M., and Rancher, J.: Source terms
and source strengths of the carbonaceous aerosol in the tropics, J. Atmos.
Chem., 3, 469–489, https://doi.org/10.1007/BF00053872, 1985.
Cachier, H., Buat Menard, P., Fontugne, M., and Chesselet, R.: Long-range
transport of continentally-derived particulate carbon in the marine
atmosphere: Evidence from stable carbon isotope studies, Tellus B, 38,
161–177, https://doi.org/10.3402/tellusb.v38i3-4.15125, 1986.
Cao, J. J., Lee, S. C., Ho, K. F., Zhang, X. Y., Zou, S. C., Fung, K., Chow,
J. C., and Watson, J. G.: Characteristics of carbonaceous aerosol in Pearl
River Delta Region, China during 2001 winter period, Atmos. Environ., 37,
1451–1460, https://doi.org/10.1016/S1352-2310(02)01002-6, 2003.
Cao, J. J., Lee, S. C., Chow, J. C., Watson, J. G., Ho, K. F., Zhang, R. J.,
Jin, Z. D., Shen, Z. X., Chen, G. C., and Kang, Y. M.: Spatial and seasonal
distributions of carbonaceous aerosols over China, J. Geophys. Res., 112, D22S11, https://doi.org/10.1029/2006JD008205, 2007.
Cao, J. J., Zhu, C. S., Chow, J. C., Watson, J. G., Han, Y. M., Wang, G. H.,
Shen, Z. X., and An, Z. S.: Black carbon relationships with emissions and
meteorology in Xi'an, China, Atmos. Res., 94, 194–202,
https://doi.org/10.1016/j.atmosres.2009.05.009, 2009.
Cao, J. J., Chow, J. C., Tao, J., Lee, S. C., Watson, J. G., Ho, K., Wang,
G. H., Zhu, C. S., and Han, Y. M.: Stable carbon isotopes in aerosols from
Chinese cities: Influence of fossil fuels, Atmos. Environ., 45, 1359–1363
https://doi.org/10.1016/j.atmosenv.2010.10.056, 2011.
Cao, J. J., Shen, Z. X., Chow, J. C., Watson, J. G., Lee, S. C., Tie, X. X.,
Ho, K. F., Wang, G. H., and Han, Y. M.: Winter and summer PM2.5 chemical
compositions in fourteen Chinese Cities, J. Air Waste Manage., 62, 1214–1226, https://doi.org/10.1080/10962247.2012.701193, 2012.
Castro, L. M., Pio, C. A., Harrison, R. M., and Smith, D.: Carbonaceous
aerosol in urban and rural European atmospheres: estimation of secondary
organic carbon concentrations, Atmos. Environ., 33, 2771–2781,
https://doi.org/10.1016/S1352-2310(98)00331-8, 1999.
Ceburnis, D., Garbaras, A., Szidat, S., Rinaldi, M., Fahrni, S., Perron, N., Wacker, L., Leinert, S., Remeikis, V., Facchini, M. C., Prevot, A. S. H., Jennings, S. G., Ramonet, M., and O'Dowd, C. D.: Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis, Atmos. Chem. Phys., 11, 8593–8606, https://doi.org/10.5194/acp-11-8593-2011, 2011.
Chen, Y. J., Sheng, G. Y., Bi, X. H., Feng, Y. L., Mai, B. X., and Fu, J.
M.: Emission Factors for Carbonaceous Particles and Polycyclic Aromatic
Hydrocarbons from Residential Coal Combustion in China, Environ. Sci.
Technol., 39, 1861–1867, https://doi.org/10.1021/es0493650, 2005.
Chesselet, R., Fontugne, M., Buat Menard, P., Ezat, U., and Lambert, C. E.:
The origin of particulate organic carbon in the marine atmosphere as
indicated by its stable carbon isotopic composition, Geophys. Res. Lett., 8,
345–348, https://doi.org/10.1029/GL008i004p00345, 1981.
Chow, J. C. and Watson, J. G.: PM2.5 carbonate concentrations at regionally representative Interagency Monitoring of Protected Visual Environment sites,
J. Geophys. Res., 107, 8344, https://doi.org/10.1029/2001JD000574, 2002.
Chow, J. C., Watson, J. G., Chen, L. W. A., Arnott, W. P., Moosmüller, H., and Fung, K.: Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols, Environ. Sci. Technol., 38, 4414–4422, https://doi.org/10.1021/es034936u, 2004.
Claeys, M., Kourtchev, I., Pashynska, V., Vas, G., Vermeylen, R., Wang, W., Cafmeyer, J., Chi, X., Artaxo, P., Andreae, M. O., and Maenhaut, W.: Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions, Atmos. Chem. Phys., 10, 9319–9331, https://doi.org/10.5194/acp-10-9319-2010, 2010.
Clarke, A. G. and Karani, G. N.: Characterisation of the carbonate content of atmospheric aerosols, J. Atmos. Chem., 14, 119–128, https://doi.org/10.1007/BF00115228, 1992.
Clayton, G. D., Arnold, J. R., and Patty, F. A.: Determination of Sources of
Particulate Atmospheric Carbon, Science, 122, 751–753,
https://doi.org/10.1126/science.122.3173.751, 1955.
Coplen, T. B.: New guidelines for reporting stable hydrogen, carbon, and
oxygen isotope-ratio data, Geochim. Cosmochim. Ac., 60, 3359–3360,
https://doi.org/10.1016/0016-7037(96)00263-3, 1996.
CSC (Chinese State Council): Action Plan for Air Pollution Prevention and
Control, http://www.gov.cn/zhengce/content/2013-09/13/content_4561.htm (last access: 20 April 2022), 2013 (in Chinese).
CSC (Chinese State Council): Three-year action plan to fight air pollution
(NO. 2018. 22), http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm (last access: 20 April 2022), 2018 (in Chinese).
Currie, L. A.: Evolution and Multidisciplinary Frontiers of 14C Aerosol Science, Radiocarbon, 42, 115–126, https://doi.org/10.1017/S003382220005308X, 2000.
Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition, Aust. Meteorol. Mag., 47, 295–308, 1998.
England, G., Chang, O., and Wien, S.: Development of fine particulate emission factors and speciation profiles for oil and gas-fired combustion systems, United States, https://doi.org/10.2172/822131, 2002.
Engling, G., Carrico, C. M., Kreidenweis, S. M., CollettJr., J. L., Day, D.
E., Malm, W. C., Lincoln, E., Hao, W. M., Iinuma, Y., and Herrmann, H.:
Determination of levoglucosan in biomass combustion aerosol by
high-performance anion-exchange chromatography with pulsed amperometric
detection, Atmos. Environ., 40, 299–311, https://doi.org/10.1016/j.atmosenv.2005.12.069, 2006.
Engling, G., Lee, J. J., Tsai, Y. W., Lung, S. H., C., C., Chou, C. K., and
Chan, C.: Size-Resolved Anhydrosugar Composition in Smoke Aerosol from
Controlled Field Burning of Rice Straw, Aerosol Sci. Tech., 43, 662–672,
https://doi.org/10.1080/02786820902825113, 2009.
Fang, W., Andersson, A., Zheng, M., Lee, M., Holmstrand, H., Kim, S. W., Du,
K., and Örjan, G.: Divergent Evolution of Carbonaceous Aerosols during
Dispersal of East Asian Haze, Sci. Rep., 7, 10422,
https://doi.org/10.1038/s41598-017-10766-4, 2017.
Feng, Y. L., Chen, Y. J., Guo, H., Zhi, G. R., Xiong, S. C., Li, J., Sheng,
G. Y., and Fu, J. M.: Characteristics of organic and elemental carbon in
PM2.5 samples in Shanghai, China, Atmos. Res., 92, 434–442,
https://doi.org/10.1016/j.atmosres.2009.01.003, 2009.
Fu, P. Q., Kawamura, K., Chen, J., Li, J., Sun, Y. L., Liu, Y., Tachibana, E., Aggarwal, S. G., Okuzawa, K., Tanimoto, H., Kanaya, Y., and Wang, Z. F.: Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning, Atmos. Chem. Phys., 12, 8359–8375, https://doi.org/10.5194/acp-12-8359-2012, 2012.
Gao, J. J., Wang, K., Wang, Y., Liu, S. H., Zhu, C. Y., Hao, J. M., Liu, H.
J., Hua, S. B., and Tian, H. Z.: Temporal-spatial characteristics and source
apportionment of PM2.5 as well as its associated chemical species in the
Beijing-Tianjin-Hebei region of China, Environ. Pollut., 233, 714–724,
https://doi.org/10.1016/j.envpol.2017.10.123, 2018.
Gelencsér, A., May, B., Simpson, D., Sánchez-Ochoa, A., Kasper-Giebl, A., Puxbaum, H., Caseiro, A., Pio, C., and Legrand, M.: Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin, J. Geophys. Res., 112, D23S04, https://doi.org/10.1029/2006JD008094, 2007.
Genberg, J., Hyder, M., Stenström, K., Bergström, R., Simpson, D., Fors, E. O., Jönsson, J. Å., and Swietlicki, E.: Source apportionment of carbonaceous aerosol in southern Sweden, Atmos. Chem. Phys., 11, 11387–11400, https://doi.org/10.5194/acp-11-11387-2011, 2011.
Guo, J. D., Ge, Y. S., Hao, L. J., Tan, J. W., Li, J. Q., and Feng, X. Y.:
On-road measurement of regulated pollutants from diesel and CNG buses with
urea selective catalytic reduction systems, Atmos. Environ., 99, 1–9,
https://doi.org/10.1016/j.atmosenv.2014.07.032, 2014.
Hammer, S. and Levin, I.: Monthly mean atmospheric D14CO2 at
Jungfraujoch and Schauinsland from 1986 to 2016, heiDATA [data set], V2, https://doi.org/10.11588/data/10100, 2017.
Han, R., Wang, S. X., Shen, W. H., Wang, J. D., Wu, K., Ren, Z. H., and
Feng, M. N.: Spatial and temporal variation of haze in China from 1961 to
2012, J. Environ. Sci., 46, 1001–0742, https://doi.org/10.1016/j.jes.2015.12.033, 2016.
Han, Y. M., Chen, L. W., Huang, R. J., Chow, J. C., Watson, J. G., Ni, H.
Y., Liu, S. X., Fung, K. K., Shen, Z. X., Wei, C., Wang, Q. Y., Tian, J.,
Zhao, Z. Z., Prévôt, A. S. H., and Cao, J. J.: Carbonaceous aerosols
in megacity Xi'an, China: Implications of thermal/optical protocols
comparison, Atmos. Environ., 132, 58–68, https://doi.org/10.1016/j.atmosenv.2016.02.023, 2016.
Heal, M. R.: The application of carbon-14 analyses to the source
apportionment of atmospheric carbonaceous particulate matter: a review,
Anal. Bioanal. Chem., 406, 81–98, https://doi.org/10.1007/s00216-013-7404-1, 2014.
Ho, K. F., Lee, S. C., Cao, J. J., Li, Y. S., Chow, J. C., Watson, J. G., and Fung, K.: Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong, Atmos. Chem. Phys., 6, 4569–4576, https://doi.org/10.5194/acp-6-4569-2006, 2006.
Hoffmann, D., Tilgner, A., Iinuma, Y., and Herrmann, H.: Atmospheric
stability of levoglucosan: a detailed laboratory and modeling study,
Environ. Sci. Technol., 44, 694–699, https://doi.org/10.1021/es902476f, 2010.
Hoyle, C. R., Boy, M., Donahue, N. M., Fry, J. L., Glasius, M., Guenther, A., Hallar, A. G., Huff Hartz, K., Petters, M. D., Petäjä, T., Rosenoern, T., and Sullivan, A. P.: A review of the anthropogenic influence on biogenic secondary organic aerosol, Atmos. Chem. Phys., 11, 321–343, https://doi.org/10.5194/acp-11-321-2011, 2011.
Hua, Q. and Barbetti, M.: Review of Tropospheric Bomb 14C Data for Carbon Cycle Modeling and Age Calibration Purposes, Radiocarbon, 46, 1273–1298, https://doi.org/10.1017/S0033822200033142, 2004.
Huang, J., Kang, S. C., Shen, C. D., Cong, Z. Y., Liu, K. X., Wang, W., and
Liu, L. C.: Seasonal variations and sources of ambient fossil and
biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet, Atmos. Res., 96, 553–559,
https://doi.org/10.1016/j.atmosres.2010.01.003, 2010.
Huang, L., Brook, J. R., Zhang, W., Li, S. M., Graham, L., Ernst, D.,
Chivulescu, A., and Lu, G.: Stable isotope measurements of carbon fractions
( ) in airborne particulate: A new dimension for source characterization and apportionment, Atmos. Environ., 40, 2690–2705,
https://doi.org/10.1016/j.atmosenv.2005.11.062, 2006.
Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M.,
Dällenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter,
P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and
Prévôt, A.: High secondary aerosol contribution to particulate
pollution during haze events in China, Nature, 514, 218–222,
https://doi.org/10.1038/nature13774, 2014.
Jacobson, M. C., Hansson, H.-C., Noone, K. J., and Charlson, R. J.: Organic
atmospheric aerosols: Review and state of the science, Rev. Geophys., 38,
267–294, https://doi.org/10.1029/1998RG000045, 2000.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black
carbon in atmospheric aerosols, Nature, 409, 695–697, https://doi.org/10.1038/35055518,
2001.
Ji, D. S., Yan, Y. C., Wang, Z. S., He, J., Liu, B. X., Sun, Y., Gao, M.,
Li, Y., Cao, W., Cui, Y., Hu, B., Xin, J. Y., Wang, L. L., Liu, Z. R., Tang,
G. Q., and Wang, Y. S.: Two-year continuous measurements of carbonaceous
aerosols in urban Beijing, China: Temporal variations, characteristics and
source analyses, Chemosphere, 200, 191–200,
https://doi.org/10.1016/j.chemosphere.2018.02.067, 2018.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I.,
Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S.,
Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi,
T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K.,
Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Jull, A. J. T.: Radiocarbon dating/AMS method, Encyclopedia of Quaternary Science, 2911–2918, https://doi.org/10.1016/B0-44-452747-8/00041-7, 2007.
Kawashima, H. and Haneishi, Y.: Effects of combustion emissions from the
Eurasian continent in winter on seasonal δ13C of elemental carbon in aerosols in Japan, Atmos. Environ., 46, 568–579,
https://doi.org/10.1016/j.atmosenv.2011.05.015, 2012.
Kiehl, J. T.: Twentieth century climate model response and climate sensitivity,
Geophys. Res. Lett., 34, 22710, https://doi.org/10.1029/2007GL031383, 2007.
Kirillova, E. N., Andersson, A., Sheesley, R. J., Kruså, M., Praveen, P.
S., Budhavant, K., Safai, P. D., Rao, P., and Gustafsson, Ö.: 13C- and 14C-based study of sources and atmospheric processing of water-soluble organic carbon (WSOC) in South Asian aerosols, J. Geophys. Res.-Atmos., 118, 614–626, https://doi.org/10.1002/jgrd.50130, 2013.
Kumagai, K., Iijima, A., Shimoda, M., Saitoh, Y., Kozawa, K., Hagino, H.,
and Sakamoto, K.: Determination of Dicarboxylic Acids and Levoglucosan in
Fine Particles in the Kanto Plain, Japan, for Source Apportionment of
Organic Aerosols, Aerosol Air Qual. Res., 10, 282–291,
https://doi.org/10.4209/aaqr.2009.11.0075, 2010.
Levin, I., Kromer, B., Schmidt, M., and Sartorius, H.: A novel approach for
independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations, Geophys. Res. Lett., 30, 2194, https://doi.org/10.1029/2003GL018477, 2003.
Levin, I., Naegler, T., Kromer, B., Diehl, M., Francey, R., Gomez Pelaez,
A., Steele, P., Wagenbach, D., Weller, R., and Worthy, D.: Observations and
modelling of the global distribution and long-term trend of atmospheric
14CO2, Tellus B, 62, 26–46, https://doi.org/10.1111/j.1600-0889.2009.00446.x, 2010.
Lewis, C. W., Klouda, G. A., and Ellenson, W. D.: Radiocarbon measurement of
the biogenic contribution to summertime PM-2.5 ambient aerosol in Nashville,
TN, Atmos. Environ., 38, 6053–6061, https://doi.org/10.1016/j.atmosenv.2004.06.011, 2004.
Li, C. L., Bosch, C., Kang, S. C., Andersson, A., Chen, P. F., Zhang, Q. G.,
Cong, Z. Y., Chen, B., Qin, D. H., and Gustafsson, Ö.: Sources of black
carbon to the Himalayan–Tibetan Plateau glaciers, Nat. Commun., 7, 12574,
https://doi.org/10.1038/ncomms12574, 2016.
Li, H. M., Yang, Y., Wang, H. L., Li, B. J., Wang, P. Y., Li, J. D., and
Liao, H.: Constructing a spatiotemporally coherent long-term PM2.5
concentration dataset over China during 1980–2019 using a machine learning
approach, Sci. Total Environ., 765, 144256, https://doi.org/10.1016/j.scitotenv.2020.144263, 2021.
Li, X. R., Wang, Y. S., Guo, X. Q., and Wang, Y. F.: Seasonal variation and
source apportionment of organic and inorganic compounds in PM2.5 and PM10 particulates in Beijing, China, J. Environ. Sci., 25, 741–750,
https://doi.org/10.1016/S1001-0742(12)60121-1, 2013.
Li, Y. M., Fu, T.-M., Yu, J. Z., Feng, X., Zhang, L. J., Chen, J., Boreddy,
S. K. R., Kawamura, K., Fu, P., Yang, X., Zhu, L., and Zeng, Z. Z.: Impacts
of chemical degradation on the global budget of atmospheric levoglucosan and
its use as a biomass burning tracer, Environ. Sci. Technol., 55, 5525–5536,
https://doi.org/10.1021/acs.est.0c07313, 2021.
Liao, C. P., Wu, C. Z., Yan, Y. J., and Huang, H. T.: Chemical elemental
characteristics of biomass fuels in China, Biomass Bioenerg., 27, 119–130,
https://doi.org/10.1016/j.biombioe.2004.01.002, 2004.
Lim, S., Yang, X., Lee, M., Li, G., Jeon, K., Lim, S. H., YangYang, X., Lee,
M. H., Li, G., Gao, Y. G., Shang, X. N., Zhang, K., I.Czimczik, C., Xu, X.
M., Min-SukBae, Moon, K.-J., and Jeon, K.: Fossil-driven secondary inorganic
PM2.5 enhancement in the North China Plain: Evidence from carbon and
nitrogen isotopes, Environ. Pollut., 266, 115163,
https://doi.org/10.1016/j.envpol.2020.115163, 2020.
Liu, D., Li, J., Zhang, Y. L., Xu, Y., Liu, X., Ping, D., Shen, C. D., Chen,
Y. J., Tian, C., and Zhang, G.: The Use of Levoglucosan and Radiocarbon for
Source Apportionment of PM2.5 Carbonaceous Aerosols at a Background Site in East China, Environ. Sci. Technol., 47, 10454–10461, https://doi.org/10.1021/es401250k, 2013.
Liu, J., Mo, Y., Li, J., Liu, D., Shen, C., Ding, P., Jiang, H., Cheng, Z.,
Zhang, X., and Tian, C.: Radiocarbon-derived source apportionment of fine
carbonaceous aerosols before, during, and after the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China, J. Geophys. Res.-Atmos., 121, 4177–4187, https://doi.org/10.1002/2016JD024865, 2016a.
Liu, J., Li, J., Liu, D., Ding, P., Shen, C., Mo, Y., Wang, X., Luo, C., Cheng, Z., Szidat, S., Zhang, Y., Chen, Y., and Zhang, G.: Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers, Atmos. Chem. Phys., 16, 2985–2996, https://doi.org/10.5194/acp-16-2985-2016, 2016b.
Liu, Y., Shao, M., Fu, L. L., Lu, S. H., Zeng, L. M., and Tang, D. G.:
Source profiles of volatile organic compounds (VOCs) measured in China: Part I, Atmos. Environ., 42, 6247–6260, https://doi.org/10.1016/j.atmosenv.2008.01.070, 2008.
Liu, Z. R., Hu, B., Liu, Q., Sun, Y., and Wang, Y. S.: Source apportionment
of urban fine particle number concentration during summertime in Beijing,
Atmos. Environ., 96, 359–369, https://doi.org/10.1016/j.atmosenv.2014.06.055, 2014.
Locker, H. B.: The use of levoglucosan to assess the environmental impact of
residential wood-burning on air quality, PhD thesis, Dartmouth College, Hanover, NH, US, 1988.
López-Veneroni, D.: The stable carbon isotope composition of PM2.5 and PM10 in Mexico City Metropolitan Area air, Atmos. Environ., 43, 4491–4502, https://doi.org/10.1016/j.atmosenv.2009.06.036, 2009.
Lu, L., Tang, Y., Xie, J. S., and Yuan, Y. L.: The role of marginal
agricultural land-based mulberry planting in biomass energy production,
Renew. Energ., 34, 1789–1794, https://doi.org/10.1016/j.renene.2008.12.017, 2009.
Martinelli, L. A., Camargo, P. B., Lara, L., Victoria, R. L., and Artaxo,
P.: Stable carbon and nitrogen isotopic composition of bulk aerosol
particles in a C4 plant landscape of southeast Brazil, Atmos. Environ., 36, 2427–2432, https://doi.org/10.1016/S1352-2310(01)00454-X, 2002.
MEE (Ministry of Ecology and Environment of the People's Republic of
China): Technical Regulation on Ambient Air Quality Index, China
Environmental Science Press (HJ 633–2012), http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201203/t20120302_224166.shtml (last access: 20 April 2022), 2012 (in Chinese).
MEE (Ministry of Ecology and Environment of the People's Republic of
China): Bulletin of Ecology and Environment of the People's Republic of
China 2013, http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201605/P020160526564730573906.pdf (last access: 20 April 2022), 2014 (in Chinese).
MEE (Ministry of Ecology and Environment of the People's Republic of
China): Bulletin of Ecology and Environment of the People's Republic of
China 2018, http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201905/P020190619587632630618.pdf (last access: 20 April 2022), 2019 (in Chinese).
MEE (Ministry of Ecology and Environment of the People's Republic of
China): Bulletin of Ecology and Environment of the People's Republic of
China 2019, http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf. (last access: 20 April 2022), 2020 (in Chinese).
MEE (Ministry of Ecology and Environment of the People's Republic of
China): Bulletin of Ecology and Environment of the People's Republic of
China 2020, http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202105/P020210526572756184785.pdf (last access: 20 April 2022), 2021 (in Chinese).
Mook, W. G. and Plicht, J. V. D.: Reporting 14C Activities and
Concentrations, Radiocarbon, 41, 227–239, https://doi.org/10.1017/S0033822200057106, 1999.
Moura, J. M. S., Martens, C. S., Moreira, M. Z., Lima, R. L., Sampaio, I. C.
G., Mendlovitz, H. P., and Menton, M. C.: Spatial and seasonal variations in
the stable carbon isotopic composition of methane in stream sediments of
eastern Amazonia, Tellus B, 60, 21–31, https://doi.org/10.1111/j.1600-0889.2007.00322.x, 2008.
NBS (National bureau of statistics): China Statistical Yearbook-2019, China
Statistics press http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm (last access: 20 April 2022), 2020 (in Chinese).
NBS (National bureau of statistics): China Statistical Yearbook-2020, China
Statistics press, http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm (last access: 20 April 2022), 2021 (in Chinese).
Ni, H., Huang, R.-J., Cao, J., Liu, W., Zhang, T., Wang, M., Meijer, H. A. J., and Dusek, U.: Source apportionment of carbonaceous aerosols in Xi'an, China: insights from a full year of measurements of radiocarbon and the stable isotope 13C, Atmos. Chem. Phys., 18, 16363–16383, https://doi.org/10.5194/acp-18-16363-2018, 2018.
Ni, H., Huang, R.-J., Cosijn, M. M., Yang, L., Guo, J., Cao, J., and Dusek, U.: Measurement report: dual-carbon isotopic characterization of carbonaceous aerosol reveals different primary and secondary sources in Beijing and Xi'an during severe haze events, Atmos. Chem. Phys., 20, 16041–16053, https://doi.org/10.5194/acp-20-16041-2020, 2020.
Niu, Z. C., Wang, S., Chen, J. S., Zhang, F. W., Chen, X. Q., He, C., Lin,
L. F., Yin, L. Q., and Xu, L. L.: Source contributions to carbonaceous
species in PM2.5 and their uncertainty analysis at typical urban, peri-urban
and background sites in southeast China, Environ. Pollut., 181, 107–114,
https://doi.org/10.1016/j.envpol.2013.06.006, 2013.
Niu, Z. C., Zhou, W. J., Cheng, P., Wu, S. G., Lu, X. F., Xiong, X. H., Du,
H., and Fu, Y. C.: Observations of Atmospheric Δ14CO2 at the Global and Regional Background Sites in China: Implication for Fossil Fuel CO2 Inputs, Environ. Sci. Technol., 50, 12122–12128, https://doi.org/10.1021/acs.est.6b02814, 2016.
Niu, Z. C., Feng, X., Zhou, W. J., Wang, P., Liu, Y., Lu, X. F., Du, H., Fu,
Y. C., Li, M., Mei, R. C., Li, Q., and Cai, Q. F.: Tree-ring Ä Δ14C time series from 1948 to 2018 at a regional background site, China: Influences of atmospheric nuclear weapons tests and fossil fuel emissions, Atmos. Environ., 246, 118156, https://doi.org/10.1016/j.atmosenv.2020.118156, 2021.
Novakov, T., Menon, S., Kirchstetter, T. W., Koch, D., and Hansen, J. E.:
Aerosol organic carbon to black carbon ratios: Analysis of published data
and implications for climate forcing, J. Geophys. Res., 110, D21205, https://doi.org/10.1029/2005JD005977, 2005.
Oros, D. R. and Simoneit, B. R. T.: Identification and emission factors of
molecular tracers in organic aerosols from biomass burning Part 2. Deciduous
trees, Appl. Geochem., 16, 1545–1565, https://doi.org/10.1016/s0883-2927(01)00022-1, 2001a.
Oros, D. R. and Simoneit, B. R. T.: Identification and emission factors of
molecular tracers in organic aerosols from biomass burning Part 1. Temperate
climate conifers, Appl. Geochem., 16, 1513–1544,
https://doi.org/10.1016/s0883-2927(01)00021-x, 2001b.
PGHP (The People's Government of Hebei Province): Hebei Economic
Yearbook-2020, China Statistics press, http://tjj.hebei.gov.cn/hetj/tjnj/2020/indexch.htm (last access: 20 April 2022), 2021 (in Chinese).
Popovicheva, O. B., Kozlov, V. S., Engling, G., Diapouli, E., Persiantseva,
N. M., Timofeev, M. A., Fan, T.-S., Saraga, D., and Eleftheriadis, K.:
Small-scale study of siberian biomass burning: I. Smoke microstructure,
Aerosol Air Qual. Res., 15, 117–128, https://doi.org/10.4209/aaqr.2014.09.0206, 2014.
Pugliese, S. C., Murphy, J. G., Vogel, F., and Worthy, D.: Characterization
of the δ13C signatures of anthropogenic CO2 emissions in the Greater Toronto Area, Canada, Appl. Geochem., 83, 171–1800,
https://doi.org/10.1016/j.apgeochem.2016.11.003, 2017.
Puxbaum, H., Caseiro, A., Sánchez-Ochoa, A., Kasper-Giebl, A., Claeys,
M., Gelencsér, A., Legrand, M., Preunkert, S., and Pio, C.: Levoglucosan
levels at background sites in Europe for assessing the impact of biomass
combustion on the European aerosol background, J. Geophys. Res., 112,
D23S05, https://doi.org/10.1029/2006jd008114, 2007.
Rajput, P., Sarin, M. M., Rengarajan, R., and Singh, D.: Atmospheric
polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning
emissions in the Indo-Gangetic Plain: isomer ratios and temporal trends,
Atmos. Environ., 45, 6732–6740, https://doi.org/10.1016/j.atmosenv.2011.08.018, 2011.
SAPBS (Shaanxi Provincial Bureau of Statistics): Shaanxi Statistical Yearbook-2020, China Statistics press, http://tjj.shaanxi.gov.cn/upload/2021/zl/2020/zk/indexch.htm (last access: 20 April 2022), 2020 (in Chinese).
Seinfeld, J. H: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Environ.: Sci. Policy Sustainable Dev., 40, 26, https://doi.org/10.1080/00139157.1999.10544295, 1998.
Shang, J., Khuzestani, R. B., Tian, J., Schauer, J. J., Hua, J., Zhang, Y.,
Cai, T., Fang, D., An, J., and Zhang, Y.: Chemical characterization and
source apportionment of PM2.5 personal exposure of two cohorts living in
urban and suburban Beijing, Environ. Pollut., 246, 225–236, https://doi.org/10.1016/j.envpol.2018.11.076, 2019.
Shao, M., Li, J., and Tang, X.: The application of accelerator mass
spectrometry (AMS) in the study of source identification of aerosols, Acta Scientiae Circumstantiae, 16, 130–141, 1996 (in Chinese).
Shen, G. F., Wang, W., Yang, Y. F., Zhu, C., Min, Y. J., Xue, M., Ding, J.
N., Li, W., Wang, B., Shen, H. Z., Wang, R., Wang, X. L., and Tao, S.:
Emission factors and particulate matter size distribution of polycyclic
aromatic hydrocarbons from residential coal combustions in rural Northern
China, Atmos. Environ., 44, 5237–5243,
https://doi.org/10.1016/j.atmosenv.2010.08.042, 2010.
Shen, Z. X., Cao, J. J., Liu, S. X., Zhu, C. S., Wang, X., Zhang, T., Xu, H.
M., and Hu, T. F.: Chemical Composition of PM10 and PM2.5 Collected at Ground Level and 100 Meters during a Strong Winter-Time Pollution Episode in Xi'an, China, J. Air Waste Manage. Assoc., 61, 1150–1159, https://doi.org/10.1080/10473289.2011.608619, 2011.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O.,
Fraser, M. P., Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for
cellulose in biomass burning and atmospheric particles, Atmos. Environ., 33,
173–182, https://doi.org/10.1016/S1352-2310(98)00145-9, 1999.
Simpson, D., Yttri, K. E., Klimont, Z., Kupiainen, K., Caseiro, A.,
Gelencsér, A., Pio, C., Puxbaum, H., and Legrand, M.: Modeling
carbonaceous aerosol over Europe: Analysis of the CARBOSOL and EMEP EC/OC
campaigns, J. Geophys. Res., 112, D23S14, https://doi.org/10.1029/2006JD008158, 2007.
Slota, P. J., Jull, A. J. T., Linick, T. W., and Toolin, L. J.: Preparation
of Small Samples for 14C Accelerator Targets by Catalytic Reduction of CO, Radiocarbon, 29, 303–306, https://doi.org/10.1017/S0033822200056988, 1987.
Smith, B. N., and Epstein, S.: Two Categories of 13C/12C Ratios for Higher
Plants, Plant Physiol., 47, 380–384, https://doi.org/10.1029/2006JD008158,
1971.
Song, Y., Zhang, Y. H., Xie, S. D., Zeng, L. M., Zheng, M., Salmon, L.,
Shao, M., and Slanina, S.: Source apportionment of PM2.5 in Beijing by
positive matrix factorization, Atmos. Environ., 40, 1526–1537,
https://doi.org/10.1016/j.atmosenv.2005.10.039, 2006.
SPBS (Shanxi Provincial Bureau of Statistics): Shanxi Statistical
Yearbook-2019, China Statistics press, http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2019/zk/indexch.htm (last access: 20 April 2022), 2020 (in Chinese).
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q.,
He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H.,
and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in
Asia in the year 2000, J. Geophys. Res., 108, 8809,
https://doi.org/10.1029/2002JD003093, 2003a.
Streets, D. G., Yarber, K. F., Woo, J.-H., and Carmichael, G. R.: Biomass
burning in Asia: Annual and seasonal estimates and atmospheric emissions,
Global Biogeochem. Cy., 17, 1099, https://doi.org/10.1029/2003GB002040, 2003b.
Stuiver, M. and Polach, H.: Discussion: Reporting of 14C data, Radiocarbon, 19, 355–363, https://doi.org/10.1017/S0033822200003672, 1977.
Sun, X. S., Hu, M., Guo, S., Liu, K. X., and Zhou, L. P.: 14C-Based source assessment of carbonaceous aerosols at a rural site, Atmos. Environ., 50, 36–40, https://doi.org/10.1016/j.atmosenv.2012.01.008, 2012.
Sun, Y. L., Zhuang, G. S., Tang, A. H., Wang, Y., and An, Z. S.: Chemical
characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing, Environ. Sci. Technol., 40, 3148–3155, https://doi.org/10.1021/es051533g, 2006.
Szidat, S., Jenk, T. M., Gaeggeler, H. W., Synal, H. A., Hajdas, I., Bonani,
G., and Saurer, M.: THEODORE, a two-step heating system for the
determination of radiocarbon (14C) in the environment, Nucl. Instrum. Meth. B, 223, 829–836, https://doi.org/10.1016/j.nimb.2004.04.153, 2004.
Szidat, S., Jenk, T. M., Synal, H.-A., Kalberer, M., Wacker, L., Hajdas, I., Kasper-Giebl, A., and Baltensperger, U.: Contributions of fossil fuel,
biomass burning, and biogenic emissions to carbonaceous aerosols in
Zürich as traced by 14C, J. Geophys. Res.,
111, D07206, https://doi.org/10.1029/2005JD006590, 2006.
Szidat, S., Ruff, M., Perron, N., Wacker, L., Synal, H.-A., Hallquist, M., Shannigrahi, A. S., Yttri, K. E., Dye, C., and Simpson, D.: Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Göteborg, Sweden, Atmos. Chem. Phys., 9, 1521–1535, https://doi.org/10.5194/acp-9-1521-2009, 2009.
Tanarit, S., Alex, G., Detlev, H., Jana, M., and Christine, W.: Secondary
Organic Aerosol from Sesquiterpene and Monoterpene Emissions in the United
States, Environ. Sci. Technol., 42, 8784–8790, https://doi.org/10.1021/es800817r, 2008.
Tian, S. L., Pan, Y. P., and Wang, Y. S.: Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes, Atmos. Chem. Phys., 16, 1–19, https://doi.org/10.5194/acp-16-1-2016, 2016.
Turekian, V. C., Macko, S., Ballentine, D., Swap, R. J., and Garstang, M.:
Causes of bulk carbon and nitrogen isotopic fractionations in the products
of vegetation burns: laboratory studies, Chem. Geol., 152, 181–192,
https://doi.org/10.1016/S0009-2541(98)00105-3, 1998.
Turnbull, J. C., Lehman, S. J., Miller, J. B., Sparks, R. J., Southon, J.
R., and Tans, P. P.: A new high precision 14CO2 time series for North American continental air, J. Geophys. Res., 112, D11310, https://doi.org/10.1029/2006jd008184, 2007.
Turpin, B. J. and Huntzicker, J. J.: Identification of secondary organic
aerosol episodes and quantitation of primary and secondary organic aerosol
concentrations during SCAQS, Atmos. Environ., 29, 3527–3544,
https://doi.org/10.1016/1352-2310(94)00276-Q, 1995.
Vardag, S. N., Gerbig, C., Janssens-Maenhout, G., and Levin, I.: Estimation of continuous anthropogenic CO2: model-based evaluation of CO2, CO, δ13C(CO2) and Δ14C(CO2) tracer methods, Atmos. Chem. Phys., 15, 12705–12729, https://doi.org/10.5194/acp-15-12705-2015, 2015.
Vonwiller, M., Quintero, G. S., and Szidat, S.: Isolation and 14C analysis of humic-like substances (HULIS) from ambient aerosol samples, in: 2nd International Radiocarbon in the Environment Conference. Debrecen, Hungary, 3–7 July 2017, https://doi.org/10.7892/boris.108864, 2017.
Wang, G., Cheng, S., Li, J., Lang, J., Wen, W., Yang, X., Tian, L., Wang,
G., Cheng, S. Y., Li, J. B., Lang, J. L., Wen, W., Yang, X. W., and Tian,
L.: Source apportionment and seasonal variation of PM2.5 carbonaceous
aerosol in the Beijing-Tianjin-Hebei Region of China, Environ. Monit.
Assess., 187, 143, https://doi.org/10.1007/s10661-015-4288-x, 2015.
Wang, H. L., Zhuang, Y. H., Wang, Y., Yuan, Y. L., and Zhuang, G. S.:
Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China, J. Environ. Sci., 20, 1323–1327,
https://doi.org/10.1016/S1001-0742(08)62228-7, 2008.
Wang, X. F., Zhu, G. H., Wu, Y. G., and Shen, X. Y.: Chemical composition
and size distribution of particles in the atmosphere in north part of
Beijing city for winter and summer, Chinese Journal of
Atmospheric Sciences, 14, 199–206,
https://doi.org/10.3878/j.issn.1006-9895.1990.02.09, 1990 (in Chinese).
Wang, Z. Z., Bi, X. H., Sheng, G. Y., and Fu, J. M.: Characterization of
organic compounds and molecular tracers from biomass burning smoke in South
China I: Broad-leaf trees and shrubs, Atmos. Environ., 43, 3096–3102,
https://doi.org/10.1016/j.atmosenv.2009.03.012, 2009.
Weber, R. J., Sullivan, A. P., Peltier, R. E., Russell, A., Yan, B., Zheng,
M., Gouw, J. D., Warneke, C., Brock, C., and Holloway, J. S.: A study of
secondary organic aerosol formation in the anthropogenic-influenced
southeastern United States, J. Geophys. Res., 112, D13302, https://doi.org/10.1029/2007jd008408, 2007.
Widory, D.: Combustibles, fuels and their combustion products: A view
through carbon isotopes, Combust. Theor. Model., 10, 831–841,
https://doi.org/10.1080/13647830600720264, 2006.
Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., Semiletov, I. P.,
Dudarev, O. V., Charkin, A., Shakhova, N., Klimont, Z., and Heyes, C.:
Siberian Arctic black carbon sources constrained by model and observation,
P. Natl. Acad. Sci. USA, 114, E1054–E1061, https://doi.org/10.1073/pnas.1613401114, 2017.
Wu, J., Kong, S. F., Zeng, X., Cheng, Y., Yan, Q., Zheng, H., Yan, Y. Y.,
Zheng, S. R., Liu, D. T., Zhang, X. Y., Fu, P. Q., Wang, S. X., and Qi, S.
H.: First High-Resolution Emission Inventory of Levoglucosan for Biomass
Burning and Non-Biomass Burning Sources in China, Environ. Sci. Technol.,
55, 1497–1507, https://doi.org/10.1021/acs.est.0c06675, 2021.
XAMBS (Xi'an Municipal Bureau Statistics): Xi'an Statistical Yearbook-2014,
China Statistics press, http://tjj.xa.gov.cn/tjnj/2014/tjnj/indexch.htm (last access: 20 April 2022), 2014 (in Chinese).
XAMBS (Xi'an Municipal Bureau Statistics): Xi'an Statistical Yearbook-2020
China Statistics press, http://tjj.xa.gov.cn/tjnj/2020/zk/indexch.htm (last access: 20 April 2022), 2021 (in Chinese).
Yan, X. Y. and Crookes, R. J.: Energy demand and emissions from road
transportation vehicles in China, Prog. Energ. Combust., 36, 651–676,
https://doi.org/10.1016/j.pecs.2010.02.003, 2010.
Yan, X. Y., Ohara, T., and Akimoto, H.: Bottom-up estimate of biomass
burning in mainland china, Atmos. Environ., 40, 5262–5273,
https://doi.org/10.1016/j.atmosenv.2006.04.040, 2006.
Yang, F., He, K., Ye, B., Chen, X., Cha, L., Cadle, S. H., Chan, T., and Mulawa, P. A.: One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai, Atmos. Chem. Phys., 5, 1449–1457, https://doi.org/10.5194/acp-5-1449-2005, 2005.
Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, 2013.
Zhang, Y. L., Perron, N., Ciobanu, V. G., Zotter, P., Minguillón, M. C., Wacker, L., Prévôt, A. S. H., Baltensperger, U., and Szidat, S.: On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols, Atmos. Chem. Phys., 12, 10841–10856, https://doi.org/10.5194/acp-12-10841-2012, 2012.
Zhang, Y.-L., Huang, R.-J., El Haddad, I., Ho, K.-F., Cao, J.-J., Han, Y., Zotter, P., Bozzetti, C., Daellenbach, K. R., Canonaco, F., Slowik, J. G., Salazar, G., Schwikowski, M., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Baltensperger, U., Prévôt, A. S. H., and Szidat, S.: Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013, Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, 2015.
Zhang, Y. L., Ren, H., Sun, Y. L., Cao, F., Chang, Y. H., Liu, S. D., Lee,
X. H., Agrios, K., Kawamura, K., Liu, D., Ren, L. J., Du, W., Wang, Z. F.,
Prévôt, A. S. H., Szidat, S., and Fu, P. Q.: High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China, Environ. Sci. Technol., 51, 7842–7852, https://doi.org/10.1021/acs.est.7b01517, 2017.
Zhang, Y. X., Shao, M., Zhang, Y. H., Zeng, L. M., HE., L. Y., Zhu, B., Wei,
Y. J., and Zhu, X. L.: Source profiles of particulate organic matters
emitted from cereal straw burnings, J. Environ. Sci., 19, 167–175,
https://doi.org/10.1016/S1001-0742(07)60027-8, 2007.
Zhang, Z. S., Engling, G., Chan, C. Y., Yang, Y. H., Lin, M., Shi, S., He,
J., Li, Y. D., and Wang, X. M.: Determination of isoprene-derived secondary
organic aerosol tracers (2-methyltetrols) by HPAEC-PAD: Results from
size-resolved aerosols in a tropical rainforest, Atmos. Environ., 70,
468–476, https://doi.org/10.1016/j.atmosenv.2013.01.020, 2013.
Zhang, Z. S., Gao, J., Zhang, L. M., Wang, H., Tao, J., Qiu, X. H., Chai, F.
H., Li, Y., and Wang, S. L.: Observations of biomass burning tracers in PM2.5 at two megacities in North China during 2014 APEC summit, Atmos.
Environ., 169, 54–65, https://doi.org/10.1016/j.atmosenv.2017.09.011, 2017.
Zhao, H., Niu, Z., Zhou W., Wang, S., Feng, X., Wu, S., Lu, X., and Du, H.: Research data supporting “Measurement report: Source apportionment of carbonaceous aerosol using dual-carbon isotopes (13C and 14C) and levoglucosan in three northern Chinese cities during 2018–2019”, East Asian Paleoenvironmental Science Database [data set], http://paleodata.ieecas.cn/FrmDataInfo_EN.aspx?id=5f8b678f-716c-4cc7-81aa-0528c42e698c, last access: 20 April 2022.
Zhao, P. S., Dong, F., Yang, Y. D., He, D., Zhao, X. J., Zhang, W. Z., Yao,
Q., and Liu, H. Y.: Characteristics of carbonaceous aerosol in the region of
Beijing, Tianjin, and Hebei, China, Atmos. Environ., 71, 389–398,
https://doi.org/10.1016/j.atmosenv.2013.02.010, 2013.
Zhao, Z. Z., Cao, J. J., Zhang, T., XingShen, Z., Ni, H. Y., Tian, J., Wang,
Q. Y., Liu, S. X., Zhou, J. M., Gu, J., and Shen, G. Z.: Stable carbon
isotopes and levoglucosan for PM2.5 elemental carbon source apportionments in the largest city of northwest china, Atmos. Environ., 185, 253–261, https://doi.org/10.1016/j.atmosenv.2018.05.008, 2018.
Zhi, G. R., Chen, Y. J., Feng, Y. L., Xiong, S. C., Jun, L. I., Zhang, G.,
Sheng, G. Y., and Jiamo, F. U.: Emission characteristics of carbonaceous
particles from various residential coal-stoves in China, Environ. Sci.
Technol., 42, 3310–3315, https://doi.org/10.1021/es702247q, 2008.
Zhou, W. J., Zhao, X. L., Feng, L. X., Lin, L., Kun, W. Z., Peng, C., Nian,
Z. W., and Hai, H. C.: The 3MV multi-element AMS in Xi'an, China: Unique
features and preliminary tests, Radiocarbon, 48, 285–293,
https://doi.org/10.1017/S0033822200066492, 2006.
Zhou, W. J., Lua, X. F., Wu, Z. K., Zhao, W. N., Huang, C. H., Lia, L. L.,
Chen, P., and Xin, Z. H.: New results on Xi'an-AMS and sample preparation
systems at Xi'an-AMS center, Nucl. Instrum. B, 262, 135–142, https://doi.org/10.1016/j.nimb.2007.04.221, 2007.
Zhou, W. J., Wu, S. G., Huo, W. W., Xiong, X. H., Cheng, P., Lu, X. F., and
Niu, Z. C.: Tracing fossil fuel CO2 using Δ14C in Xi'an City, China, Atmos. Environ., 94, 538–545, https://doi.org/10.1016/j.atmosenv.2014.05.058, 2014.
Short summary
In this study, we investigated the characteristics and changes in the sources of carbonaceous aerosols in northern Chinese cities using dual-carbon isotopes (13C and 14C) and levoglucosan during 2018 to 2019 and compared them with the research in previous decades. The results show that the contribution of fossil sources has decreased (6–16%) significantly, and non-fossil sources have become the main part of carbonaceous aerosols, which verified the effectiveness of air quality management.
In this study, we investigated the characteristics and changes in the sources of carbonaceous...
Altmetrics
Final-revised paper
Preprint