Articles | Volume 22, issue 5
https://doi.org/10.5194/acp-22-3631-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-3631-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Redistribution of total reactive nitrogen in the lowermost Arctic stratosphere during the cold winter 2015/2016
Institut für Physik der Atmosphäre, Deutsches Zentrum für
Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
Peter Hoor
Institut für Physik der Atmosphäre,
Johannes-Gutenberg-Universität Mainz, Mainz, Germany
Jens-Uwe Grooß
Institut für Energie- und Klimaforschung – Stratosphäre
(IEK-7), Forschungszentrum Jülich, Jülich, Germany
Andreas Zahn
Institut für Meteorologie und Klimaforschung, Karlsruher Institut
für Technologie, Karlsruhe, Germany
Greta Stratmann
Institut für Physik der Atmosphäre, Deutsches Zentrum für
Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
now at: Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
Paul Stock
Institut für Physik der Atmosphäre, Deutsches Zentrum für
Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
Michael Lichtenstern
Institut für Physik der Atmosphäre, Deutsches Zentrum für
Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
Jens Krause
Institut für Physik der Atmosphäre,
Johannes-Gutenberg-Universität Mainz, Mainz, Germany
now at: Excelitas Technologies GmbH & Co. KG, Wiesbaden, Germany
Vera Bense
Institut für Physik der Atmosphäre,
Johannes-Gutenberg-Universität Mainz, Mainz, Germany
Armin Afchine
Institut für Energie- und Klimaforschung – Stratosphäre
(IEK-7), Forschungszentrum Jülich, Jülich, Germany
Christian Rolf
Institut für Energie- und Klimaforschung – Stratosphäre
(IEK-7), Forschungszentrum Jülich, Jülich, Germany
Wolfgang Woiwode
Institut für Meteorologie und Klimaforschung, Karlsruher Institut
für Technologie, Karlsruhe, Germany
Marleen Braun
Institut für Meteorologie und Klimaforschung, Karlsruher Institut
für Technologie, Karlsruhe, Germany
Jörn Ungermann
Institut für Energie- und Klimaforschung – Stratosphäre
(IEK-7), Forschungszentrum Jülich, Jülich, Germany
Andreas Marsing
Institut für Physik der Atmosphäre, Deutsches Zentrum für
Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
Institut für Physik der Atmosphäre,
Johannes-Gutenberg-Universität Mainz, Mainz, Germany
Christiane Voigt
Institut für Physik der Atmosphäre, Deutsches Zentrum für
Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
Institut für Physik der Atmosphäre,
Johannes-Gutenberg-Universität Mainz, Mainz, Germany
Andreas Engel
Institut für Atmosphäre und Umwelt, Goethe Universität
Frankfurt, Frankfurt, Germany
Björn-Martin Sinnhuber
Institut für Meteorologie und Klimaforschung, Karlsruher Institut
für Technologie, Karlsruhe, Germany
Hermann Oelhaf
Institut für Meteorologie und Klimaforschung, Karlsruher Institut
für Technologie, Karlsruhe, Germany
Viewed
Total article views: 2,800 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Sep 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,258 | 484 | 58 | 2,800 | 43 | 51 |
- HTML: 2,258
- PDF: 484
- XML: 58
- Total: 2,800
- BibTeX: 43
- EndNote: 51
Total article views: 1,725 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Mar 2022)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,422 | 272 | 31 | 1,725 | 35 | 45 |
- HTML: 1,422
- PDF: 272
- XML: 31
- Total: 1,725
- BibTeX: 35
- EndNote: 45
Total article views: 1,075 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Sep 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
836 | 212 | 27 | 1,075 | 8 | 6 |
- HTML: 836
- PDF: 212
- XML: 27
- Total: 1,075
- BibTeX: 8
- EndNote: 6
Viewed (geographical distribution)
Total article views: 2,800 (including HTML, PDF, and XML)
Thereof 2,842 with geography defined
and -42 with unknown origin.
Total article views: 1,725 (including HTML, PDF, and XML)
Thereof 1,759 with geography defined
and -34 with unknown origin.
Total article views: 1,075 (including HTML, PDF, and XML)
Thereof 1,083 with geography defined
and -8 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
5 citations as recorded by crossref.
- Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails R. Märkl et al. 10.5194/acp-24-3813-2024
- Investigating the radiative effect of Arctic cirrus measured in situ during the winter 2015–2016 A. Marsing et al. 10.5194/acp-23-587-2023
- The influence of extratropical cross-tropopause mixing on the correlation between ozone and sulfate aerosol in the lowermost stratosphere P. Joppe et al. 10.5194/acp-24-7499-2024
- Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic Z. Wang et al. 10.5194/acp-23-1941-2023
- Challenge of modelling GLORIA observations of upper troposphere–lowermost stratosphere trace gas and cloud distributions at high latitudes: a case study with state-of-the-art models F. Haenel et al. 10.5194/acp-22-2843-2022
4 citations as recorded by crossref.
- Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails R. Märkl et al. 10.5194/acp-24-3813-2024
- Investigating the radiative effect of Arctic cirrus measured in situ during the winter 2015–2016 A. Marsing et al. 10.5194/acp-23-587-2023
- The influence of extratropical cross-tropopause mixing on the correlation between ozone and sulfate aerosol in the lowermost stratosphere P. Joppe et al. 10.5194/acp-24-7499-2024
- Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic Z. Wang et al. 10.5194/acp-23-1941-2023
Latest update: 14 Sep 2024
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of...
Altmetrics
Final-revised paper
Preprint