Articles | Volume 22, issue 1
https://doi.org/10.5194/acp-22-319-2022
https://doi.org/10.5194/acp-22-319-2022
Research article
 | 
10 Jan 2022
Research article |  | 10 Jan 2022

Demistify: a large-eddy simulation (LES) and single-column model (SCM) intercomparison of radiation fog

Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2021-832', Robert Tardif, 10 Nov 2021
  • RC2: 'Comment on acp-2021-832', Anonymous Referee #2, 12 Nov 2021

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Ian Boutle on behalf of the Authors (02 Dec 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (03 Dec 2021) by Johannes Quaas
AR by Ian Boutle on behalf of the Authors (03 Dec 2021)
Download
Short summary
Fog forecasting is one of the biggest problems for numerical weather prediction. By comparing many models used for fog forecasting with others used for fog research, we hoped to help guide forecast improvements. We show some key processes that, if improved, will help improve fog forecasting, such as how water is deposited on the ground. We also showed that research models were not themselves a suitable baseline for comparison, and we discuss what future observations are required to improve them.
Altmetrics
Final-revised paper
Preprint