Articles | Volume 22, issue 1
https://doi.org/10.5194/acp-22-215-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-215-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the gas–particle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity
Dalrin Ampritta Amaladhasan
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, H3A 0B9, Canada
Claudia Heyn
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
Christopher R. Hoyle
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
Institute for Atmospheric and Climate Science, ETH Zurich, 8092
Zurich, Switzerland
Imad El Haddad
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
Miriam Elser
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
Swiss Federal Laboratories for Materials Science and Technology,
Automotive Powertrain Technologies, Dübendorf, Switzerland
Simone M. Pieber
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
Empa, Laboratory for Air Pollution/Environmental Technology,
Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
Jay G. Slowik
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
Antonio Amorim
Faculdade de Ciencias, University of Lisbon, 1749-016
Lisbon, Portugal
Jonathan Duplissy
Institute for Atmospheric and Earth System Research (INAR)/Physics,
University of Helsinki, 00014 Helsinki, Finland
Helsinki Institute of Physics, University of Helsinki, 00014 Helsinki, Finland
Sebastian Ehrhart
CERN, 1211 Geneva, Switzerland
Marine Research Centre, Finnish Environment Institute (SYKE), 00790, Helsinki, Finland
Vladimir Makhmutov
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russian Federation
Ugo Molteni
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
Matti Rissanen
Aerosol Physics Laboratory, Department of Physics, Tampere University, Tampere, Finland
Yuri Stozhkov
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russian Federation
Robert Wagner
Institute for Atmospheric and Earth System Research (INAR)/Physics,
University of Helsinki, 00014 Helsinki, Finland
Armin Hansel
Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
Jasper Kirkby
CERN, 1211 Geneva, Switzerland
Institute for Atmospheric and Environmental Sciences, Goethe
University Frankfurt, 60438 Frankfurt am Main, Germany
Neil M. Donahue
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Rainer Volkamer
Department of Chemistry and CIRES, University of Colorado at
Boulder, Boulder, CO 80305, USA
Urs Baltensperger
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
Martin Gysel-Beer
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, H3A 0B9, Canada
Data sets
Dataset for Amaladhasan et al Study on RH-Dependent Isoprene SOA Dalrin Ampritta Amaladhasan, Andreas Zuend, Claudia Heyn, Christopher Robert Holyle, Imad El Haddad, Miriam Elser, Simone Maria Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Jasper Kirkby, Neil McPherson Donahue, Urs Baltensperger, and Martin Gysel-Beer https://doi.org/10.5281/zenodo.4628342
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle...
Altmetrics
Final-revised paper
Preprint