Articles | Volume 22, issue 24
https://doi.org/10.5194/acp-22-15851-2022
https://doi.org/10.5194/acp-22-15851-2022
Research article
 | 
16 Dec 2022
Research article |  | 16 Dec 2022

Enhanced natural releases of mercury in response to the reduction in anthropogenic emissions during the COVID-19 lockdown by explainable machine learning

Xiaofei Qin, Shengqian Zhou, Hao Li, Guochen Wang, Cheng Chen, Chengfeng Liu, Xiaohao Wang, Juntao Huo, Yanfen Lin, Jia Chen, Qingyan Fu, Yusen Duan, Kan Huang, and Congrui Deng

Viewed

Total article views: 1,793 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,413 333 47 1,793 137 39 51
  • HTML: 1,413
  • PDF: 333
  • XML: 47
  • Total: 1,793
  • Supplement: 137
  • BibTeX: 39
  • EndNote: 51
Views and downloads (calculated since 31 Aug 2022)
Cumulative views and downloads (calculated since 31 Aug 2022)

Viewed (geographical distribution)

Total article views: 1,793 (including HTML, PDF, and XML) Thereof 1,771 with geography defined and 22 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 18 Nov 2024
Download
Short summary
Using artificial neural network modeling and an explainable analysis approach, natural surface emissions (NSEs) were identified as a main driver of gaseous elemental mercury (GEM) variations during the COVID-19 lockdown. A sharp drop in GEM concentrations due to a significant reduction in anthropogenic emissions may disrupt the surface–air exchange balance of Hg, leading to increases in NSEs. This implies that NSEs may pose challenges to the future control of Hg pollution.
Altmetrics
Final-revised paper
Preprint