
Atmos. Chem. Phys., 22, 15851–15865, 2022
https://doi.org/10.5194/acp-22-15851-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Enhanced natural releases of mercury in response to the
reduction in anthropogenic emissions during the

COVID-19 lockdown by explainable machine learning

Xiaofei Qin1, Shengqian Zhou1, Hao Li1, Guochen Wang1, Cheng Chen1, Chengfeng Liu1,
Xiaohao Wang2, Juntao Huo2, Yanfen Lin2, Jia Chen2, Qingyan Fu2, Yusen Duan2, Kan Huang1,3,4, and

Congrui Deng1

1Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze

Estuary, Department of Environmental Science and Engineering,
Fudan University, Shanghai 200433, China

2State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake,
Shanghai Environmental Monitoring Center, Shanghai 200030, China

3Institute of Eco-Chongming (IEC), Shanghai 202162, China
4IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public

Health, Fudan University, Shanghai 200433, China

Correspondence: Kan Huang (huangkan@fudan.edu.cn) and Congrui Deng (congruideng@fudan.edu.cn)

Received: 9 August 2022 – Discussion started: 31 August 2022
Revised: 10 November 2022 – Accepted: 30 November 2022 – Published: 16 December 2022

Abstract. The wide spread of the coronavirus (COVID-19) has significantly impacted the global human ac-
tivities. Compared to numerous studies on conventional air pollutants, atmospheric mercury that has matched
sources from both anthropogenic and natural emissions is rarely investigated. At a regional site in eastern China,
an intensive measurement was performed, showing obvious decreases in gaseous elemental mercury (GEM)
during the COVID-19 lockdown, while it was not as significant as most of the other measured air pollutants.
Before the lockdown, when anthropogenic emissions dominated, GEM showed no correlation with temperature
and negative correlations with wind speed and the height of the boundary layer. In contrast, GEM showed sig-
nificant correlation with temperature, while the relationship between GEM and the wind speed/boundary layer
disappeared during the lockdown, suggesting the enhanced natural emissions of mercury. By applying a ma-
chine learning model and the SHAP (SHapley Additive exPlanations) approach, it was found that the mercury
pollution episodes before the lockdown were driven by anthropogenic sources, while they were mainly driven
by natural sources during and after the lockdown. Source apportionment results showed that the absolute con-
tribution of natural surface emissions to GEM unexpectedly increased (44 %) during the lockdown. Throughout
the whole study period, a significant negative correlation was observed between the absolute contribution of
natural and anthropogenic sources to GEM. We conclude that the natural release of mercury could be stimulated
to compensate for the significantly reduced anthropogenic GEM via the surface–air exchange in the balance of
mercury.
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1 Introduction

Mercury pollution has received widespread attention due to
its long-range transport, bioaccumulation, and neurotoxicity
(Giang and Selin, 2016; Horowitz et al., 2017; Driscoll et
al., 2013). The atmosphere is the key to the distribution of
mercury on a global scale because gaseous elemental mer-
cury (the predominant form of mercury in the atmosphere at
>90 %) has relatively high stability and long residence time
and can be transported through the atmosphere over long
distances (Xu et al., 2017; Mao et al., 2016). Mercury in
the atmosphere derives from both anthropogenic emissions
and natural processes. The main anthropogenic sources of
atmospheric mercury include coal combustion, nonferrous
smelters, cement production, waste incineration, and mining
(Wu et al., 2018, 2016). The amount of mercury in the atmo-
sphere directly emitted by anthropogenic activities accounted
for about 30 % of the global mercury emissions (Streets et
al., 2019; Steenhuisen and Wilson, 2019), and China is the
country with the largest anthropogenic atmospheric mercury
emissions in the world (Liu et al., 2019). The natural sources
of mercury in the atmosphere are mainly from the exchange
processes between natural surfaces (e.g., soil, vegetation, and
water) and the atmosphere (Outridge et al., 2018; Pirrone et
al., 2010). Unlike anthropogenic emissions, natural releases
of mercury are passive emissions and are susceptible to var-
ious environmental factors, such as meteorological parame-
ters (e.g., solar radiation, temperature, and atmospheric tur-
bulence), surface properties (e.g., soil/water mercury content,
organic matter, and microbial activity), and ambient air char-
acteristics (e.g., Hg0 concentration and O3 concentration in
the atmosphere; Zhu et al., 2016). Previous studies have fo-
cused on the effects of various meteorological factors and
different medium properties on natural surface releases of
mercury. The soil Hg0 flux and solar radiation showed a high
positive correlation, which was generally considered to be
due to the high solar radiation tending to promote the re-
duction of HgII to Hg0 (Carpi and Lindberg, 1997; Poissant
et al., 2004; Bahlmann et al., 2006). High wind speed was
conductive to the release of mercury from seawater (Wan-
ninkhof, 2014). The terrestrial vegetation acted as a global
mercury pump (Jiskra et al., 2018), and deforestation would
increase forest floor radiation and temperature, thereby in-
creasing Hg0 emissions (Carpi et al., 2014; Mazur et al.,
2014). However, few studies have investigated the impact
of changes in ambient gaseous elemental mercury (GEM)
concentration in response to the natural surface emissions of
Hg0. In the context of the global annual decrease in the Hg0

concentration (Zhang et al., 2016b), it is particularly urgent
and important to conduct such research.

China has taken many stringent and ambitious control
measures since 2013 to tackle its severe air pollution, such as
imposing ultra-low-emission standards on coal-fired power
plants and phasing out small- and high-emission factories
(Zheng et al., 2018). These pollution control measures co-

benefited the significant reduction in anthropogenic mercury
emissions (Wen et al., 2020; Liu et al., 2018). The anthro-
pogenic atmospheric mercury emissions of China fell by
22 % from 2013 to 2017 (Liu et al., 2019), and correspond-
ingly, decreasing trends in the annual mean atmospheric mer-
cury concentration were observed both at Chinese urban and
remote sites (Qin et al., 2020; Tang et al., 2018; Yin et
al., 2018). In this regard, this change could be likely to af-
fect the surface–air exchange balance of mercury. In early
2020, China’s lockdown measures to control the spread of
the 2019 novel coronavirus (COVID-19) resulted in a sig-
nificant reduction in the emissions of primary air pollutants
(Chang et al., 2020). One study in the Beijing–Tianjin–Hebei
region showed that the anthropogenic emissions of atmo-
spheric mercury reduced by about 22 % during the lockdown
compared to that before the lockdown (Wu et al., 2021).
Therefore, the COVID-19 lockdown provided a natural ex-
periment to explore how the natural surface emissions of
mercury would respond to the dramatic reduction in anthro-
pogenic mercury emissions. Traditionally, chemical transport
models were the most widely used tools for disentangling
the contributions from meteorology and various emission
sources, while the performance of these models relied heav-
ily on the availability of updated emission inventories with
high accuracy (Selin et al., 2007; Holmes et al., 2010; Huang
and Zhang, 2021). Therefore, applying traditional models to
reproduce and explain some special events and processes of
atmospheric mercury could be limited by certain uncertain-
ties. Recently, data-driven methods such as machine learn-
ing have been widely used in atmospheric science research
(Grange et al., 2018; Vu et al., 2019; Qi et al., 2019). The
model performance of machine learning in predicting atmo-
spheric pollutants (such as PM2.5) was generally better than
traditional chemical transport models (Hou et al., 2022; Yang
et al., 2021); however, these results were less robust in terms
of interpretability due to the “black box” nature of the ma-
chine learning model. With the development of data analysis
methods, tools that can unlock the mystery of machine learn-
ing have been emerging, such as the SHapley Additive exPla-
nations (SHAP) approach (Stirnberg et al., 2021). Therefore,
combined with new interpretation methods, machine learn-
ing can be a promising alternative to study the behavior of
pollutants in the atmosphere. However, few studies have ap-
plied machine learning to the study of atmospheric mercury.

Many receptor-based models have been used to determine
the sources and processes of air pollutants, among which
the positive matrix factorization (PMF) is a commonly used
method (Yu et al., 2019; Sun et al., 2016; Chang et al., 2018).
The PMF method provides quantitative source profiles and
source contributions, and the obtained source profiles can aid
factor interpretation (Belis et al., 2013). Another strength of
PMF is that the measurement uncertainty is included in the
PMF model, which ensures that species with large uncertain-
ties have less impact on the model results (Hopke, 2016).
Many previous studies have applied the PMF method to the
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source apportionment of atmospheric mercury. One study
in Canada compared the PMF model performance of atmo-
spheric mercury in different years and found that the source
profiles and source contributions of GEM in 2009 and 2010
were in good agreement (Xu et al., 2017). By using the PMF
model, the research on the western coast of Ireland found
that baseline and combustion processes were the controlling
sources of atmospheric mercury (Custodio et al., 2020). The
study in the Yangtze River Delta in eastern China suggested
that the contribution of natural sources to GEM had grad-
ually exceeded that of anthropogenic sources from 2015 to
2018 by using the PMF method (Qin et al., 2020). This indi-
cated that it is feasible to use the PMF model to identify the
sources of GEM in the atmosphere.

In this study, we first compared the concentration of GEM
and its relationship with environmental factors before, dur-
ing, and after the COVID-19 lockdown. Observational ev-
idence on the changes in anthropogenic and natural sources
of GEM was revealed. Then the drivers of the GEM variation
throughout the study period were explored by using the ma-
chine learning model and explained by a game theoretic ap-
proach. Finally, we applied a receptor model to quantify the
contribution of anthropogenic and natural sources to GEM
and unveiled the response of natural releases of mercury to
the reduction in anthropogenic mercury emissions.

2 Materials and methods

2.1 Site and instrumentation

Field measurements were conducted at the Dianshan Lake
(DSL) site (31.096◦ N, 120.988◦ E; 14 m a.g.l. – meters
above ground level) at the junction of the Shanghai, Zhe-
jiang, and Jiangsu provinces of the Yangtze River Delta
(YRD) region of China (Fig. S1 in the Supplement). It repre-
sents a rural setting and the regional-scale air pollution char-
acteristics of the YRD region. A detailed description of the
site can be found in our previous works (Qin et al., 2019,
2020).

Ambient GEM concentration was measured by an au-
tomated mercury vapor analyzer (Tekran 2537B/1130/1135
system; Tekran Instruments Corporation, Canada) at a 5 min
time resolution. More details on this instrument can be found
elsewhere (Qin et al., 2019). Water-soluble ions in PM2.5
(SO2−

4 , NO−3 , NH+4 , Cl−, Na+, K+, Mg2+, and Ca2+) and
water-soluble gases (NH3 and SO2) were continuously mea-
sured by the Monitor for AeRosols and Gases in ambient Air
(MARGA) at a flow rate of 16.7 L min−1, with a time res-
olution of 1 h (Wang et al., 2022b; Xu et al., 2020). Heavy
metals in PM2.5 (Pb, Fe, Ba, Cr, Se, Cd, Ag, Ca, Mn, Cu,
As, Ni, Zn, and V) were determined hourly by a multi-
metal monitor (Xact™ 625; Cooper Environmental Services,
LLC, USA; Wang et al., 2022a). Black carbon in PM2.5 was
continuously measured by a multi-wavelength Aethalometer
(AE33, Magee Scientific, USA; Li et al., 2021). Organic car-

bon (OC) and elemental carbon (EC) in PM2.5 were mea-
sured by an in situ semi-continuous organic carbon and ele-
mental carbon aerosol analyzer (RT-3195; Sunset Laboratory
Inc., Beaverton, Oregon, USA; Xu et al., 2018). SO2, CO,
O3, and PM2.5 were determined by Thermo Scientific mod-
els 43i, 48i-TLE, 49i, and 1405-F, respectively. Meteorolog-
ical parameters, including air temperature, relative humidity,
wind speed, and wind direction, were collected by using a
series of Vaisala weather sensors (WXT530 Weather Trans-
mitter Series; Vaisala, Vantaa, Finland) with a time resolution
of 10 min.

The air pollutants, including CO, NO2, and PM2.5 at other
ground monitoring stations in the YRD region were obtained
from the public database of the China National Environmen-
tal Monitoring Center.

The data of the planetary boundary layer (PBL) height
were obtained from the U.S. National Oceanic and
Atmospheric Administration (https://www.ready.noaa.gov/
archives.php, last access: 31 August 2022). The 3 d air
mass backward trajectories were calculated by applying
the Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model (https://www.ready.noaa.gov/HYSPLIT.
php, last access: 31 August 2022), and MeteoInfo software
was used to perform cluster analysis of backward trajecto-
ries.

2.2 Machine learning model

The artificial neural network (ANN) model was used to sim-
ulate the GEM concentration at the DSL site during the study
period. An artificial neural network is a mathematical model
based on the basic principles of neural networks in biol-
ogy. The network structure consists of the input layer, hidden
layer, and output layer of neurons. The process of obtaining
an ANN model is that the neurons of input layer pass through
each hidden layer and then reach the output layer. If the ex-
pected results are not obtained in the output layer, then the
errors are propagated back, and the neuron weights of each
hidden layer are iteratively updated to minimize them. In this
study, the long-term observational air pollutants (SO2, CO,
O3, NO2, and PM2.5) and meteorological data (air temper-
ature, relative humidity, and wind speed) in Shanghai from
1 March 2015 to 28 February 2019 were chosen as input
variables for training. These variables were directly or indi-
rectly related to the emissions (both anthropogenic and nat-
ural sources), transport, and removal processes of GEM. For
example, the main sources of SO2, CO, and NO2 were fossil
fuel combustions, which were also the largest anthropogenic
sources of GEM (Zhang et al., 2016a; Streets et al., 2011).
The natural sources of GEM were mainly from the release of
land and sea surfaces, which were closely related to temper-
ature, relative humidity, and wind speed (Wang et al., 2014;
Moore and Carpi, 2005).

The detailed training and validation of this model can be
found in our previous study (Qin et al., 2022). We have estab-
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lished an ANN model through training the long-term obser-
vational data of GEM and other auxiliary environmental pa-
rameters at DSL. The long-term observational GEM (hourly
data from 1 March 2015 to 28 February 2019; n= 17532)
in Shanghai was the target variable for training, and the cor-
responding air pollutants (SO2, CO, O3, NO2, and PM2.5)
and meteorological data (air temperature, relative humidity,
and wind speed) were chosen as input variables for training.
The data sets were randomly divided into three parts, i.e.,
70 % for training, 15 % for validation, and 15 % for testing.
We chose the neural network containing a hidden layer with
20 nodes, and the training algorithm was the Levenberg–
Marquardt. The performance of the model was evaluated
with the mean square error (MSE) and correlation coeffi-
cient (R2 value). To verify the accuracy of the trained neu-
ral network model, we compared the observed (not included
in the training data set) and simulated GEM concentrations
of DSL from 1 January to 26 February 2020 and found that
they exhibited a reasonably good correlation with the corre-
lation coefficient (R2) of 0.67. To test the applicability of the
model on the regional scale, we compared the observed and
simulated GEM concentrations in Suzhou, Ningbo, Nanjing,
and Hefei (Fig. S2). In Nanjing and Suzhou, the observed
and simulated daily GEM were consistent, with R2 values
of 0.52 and 0.71, respectively. In Ningbo, the observed and
simulated GEM in summer and winter were also consistent,
with R2 values of 0.64 and 0.65, respectively. A low bias was
derived between the observed and simulated seasonal GEM
in Hefei. This suggested that it was feasible to use the trained
ANN model to simulate the GEM concentrations in Shanghai
and even the Yangtze River Delta region.

2.3 SHapley Additive exPlanations (SHAP) approach

The SHAP approach was applied in this study to explain the
ANN model simulation results. This approach constructs a
distribution scheme based on the coalitional game theory that
comprehensively considers the requirements of the conflict-
ing parties, so as to ensure the fairness of the distribution
(Lundberg et al., 2018, 2020; Hou et al., 2022). In the game
theory, the Shapley value of a player represents the average
contribution of the player in a cooperative game, which is
a fair distribution of the total gain generated by individual
players (Lundberg and Lee, 2017). In the context of machine
learning prediction, the Shapley value of a feature at a query
point represents the contribution of that feature to the predic-
tion (response for regression or score of each class for clas-
sification) at a particular query point (Aas et al., 2021). The
Shapley value corresponds to the deviation between the pre-
diction for the query point and the average prediction caused
by the feature, and the sum of the Shapley values for all fea-
tures for specific query point corresponds to the total devia-
tion of the prediction from the average (Kumar et al., 2020).
The Shapley value of the ith feature for the query point x is
defined by the value function v as follows:

ϕi (vx)=
1
N

∑
S⊆ω\{i}

vx (S∪{i})−vx (S)
(N−1)!

|S| ! (N − |S| − 1) !
, (1)

where N is the number of all features, ω is the set of all fea-
tures, |S| is the cardinality of the set S or the number of ele-
ments in the set S, and vx is the value function of the features
in a set S for the query point x. The value of the function in-
dicates the expected contribution of the features in S to the
prediction for the query point x.

2.4 Positive matrix factorization (PMF)

The PMF model has proven to be a useful tool for obtaining
source profiles and quantifying source contributions of com-
plex air pollution (Gibson et al., 2015). The basic principle
of PMF is that the concentration of the sample is determined
by the source profiles with different contributions, which can
be described as follows:

Xij =

∑P

k=1
gikfkj + eij , (2)

where Xij represents the concentration of the j th species in
the ith sample, gik is the contribution of the kth factor in
the ith sample, fkj provides the information about the mass
fraction of the j th species in the kth factor, eij is the resid-
ual for specific measurement, and P represents the number
of factors. The number of factors being from three to eight
was explored, with the optimal solutions determined by the
slope of the Q value versus the number of factors. The Q

value is the sum of the square of the difference between the
measured and modeled concentrations weighted by the con-
centration uncertainties and needs to be minimized before
the PMF modeled determines the optimal nonnegative fac-
tor profiles and contributions (Cheng et al., 2015).

Q=
∑n

i=1

∑m

j=1

(
Xij −

∑p

k=1AikFkj

Sij

)2

,

where Xij represents the concentration of the j th contamina-
tion in the ith sample, m is the total number of the pollutants,
and n is the total number of samples. Aik represents the con-
tribution of the kth factor on the ith sample, and Fkj repre-
sents the mass fraction of the j pollutant in the kth factor. Sij

is the uncertainty in the j th pollutant on the ith factor, and P

is the number of factors. For each run in this study, the sta-
bility and reliability of the outputs were assessed by referring
to the Q value, residual analysis, and correlation coefficients
between observed and predicted concentrations. Finally, we
found that a six-factor solution showed the most stable re-
sults and gave the most reasonable interpretation. A detailed
description can be seen in previous studies (Qin et al., 2020,
2019).
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Figure 1. Hourly variations in GEM concentrations from 1 January to 26 February 2020. Box plots of GEM, SO2, NO2, CO, PM2.5, BC,
EC, Pb, As, and meteorological parameters (temperature, wind speed, relative humidity, and planetary boundary layer height) before, during,
and after the lockdown are also shown.

3 Results and discussion

3.1 Changes in GEM concentrations during the
lockdown

Figure 1 shows the time series of hourly GEM concentrations
during 1 January to 26 February 2020. Three periods were
defined, i.e., 1 to 23 January before the lockdown, 24 January
to 14 February during the lockdown, and 15 to 26 Febru-
ary after the lockdown. Before the lockdown, hourly GEM
showed strong fluctuations, with frequent extreme concentra-
tions higher than 5 ng m−3. In contrast, the diurnal variation
in GEM was significantly weakened, with hourly concentra-
tions all lower than 4 ng m−3 during the lockdown. After the
lockdown, GEM concentration was slightly higher than that
of during the lockdown. On average, GEM declined sharply
from 2.78 ng m−3 before the lockdown to 2.06 ng m−3 dur-
ing the lockdown and then rose slightly to 2.26 ng m−3 after
the lockdown. Figure 1 also shows that typical gaseous pollu-
tants, such as sulfur dioxide (SO2), nitrogen dioxide (NO2),
and carbon monoxide (CO), behaved similarly to GEM, in
addition to the PM2.5 and its components such as black car-
bon (BC), elemental carbon (EC), lead (Pb), and arsenic
(As). This temporal pattern was expected, as the nationwide
reduction in automotive mobility and energy consumption

due to the COVID-19 lockdown would certainly have lead to
drops in primary pollutants emissions. As shown in Fig. S3,
the levels of CO, NO2, and PM2.5 in the Yangtze River Delta
(YRD) declined sharply during the lockdown by 26 %, 61 %,
and 27 %, respectively, which was consistent with emissions
estimates based on up-to-date activity levels in eastern China
(Huang et al., 2021). For anthropogenic Hg emissions, one
study in the Beijing–Tianjin–Hebei region estimated a de-
cline of approximately 22 % during the lockdown, which was
mainly due to the reduction in cement clinker production,
coal-fired power plants, and residential coal combustion (Wu
et al., 2021). We compared the meteorological factors (in-
cluding air temperature, wind speed, relative humidity, and
planetary boundary layer height) before, during, and after the
lockdown (Table S1). No significant changes in the meteo-
rological factors were observed before and during the lock-
down. In addition, the 3 d backward trajectory cluster analy-
sis indicated that the transport patterns differed little between
these two periods (Fig. S4). This suggested that the signif-
icant decline in GEM concentrations during the lockdown
was mainly due to the reduced mercury emissions, rather
than changes in synoptic conditions.
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Figure 2. (a) Correlation coefficient matrix among GEM and PM2.5 components and gaseous pollutants during the whole study period.
Relationship between GEM and BC, CO, and EC (b–d) before, (e–g) during, and (h–j) after the lockdown. (k–m) The change in GEM/BC,
GEM/CO, and GEM/EC ratios before, during, and after the lockdown.

3.2 Observational evidences of enhanced effects of
natural sources on GEM

Table S2 further shows that the reduction rates of gaseous
pollutants SO2, NO2, NO, and CO during the lockdown were
9 %, 56 %, 64 %, and 33 %, respectively, compared to those
before the lockdown, while O3 showed an almost 1-fold in-
crease due to the strongly depressed titration effect from sub-
stantial reduced NOx emissions during the lockdown (Huang
et al., 2021; Yang et al., 2021). As for the primary trace ele-
ments such as Pb, Fe, Cr, Se, Ca, Mn, As, Ni, and Zn, their
reduction rates ranged from 34 % to 73 %. As for the main
chemical components in PM2.5, NO−3 , NH+4 , and BC were
strongly reduced by 58 %, 45 %, and 51 %, while SO2−

4 and
OC were less reduced by 20 % and 16 %, respectively. Ex-
cept for SO2, SO2−

4 , and OC, GEM presented a lower re-
duction rate than the other air pollutants, probably indicating
the discrepancy in key sources for different air pollutants.
In order to probe the dynamic variation in GEM sources
across the observational period, we first investigated the cor-
relations among GEM and main components of PM2.5 and
gaseous pollutants (Fig. 2a). GEM was found to be signifi-
cantly correlated with the primary air pollutants such as CO,
K+, BC, and EC, with the correlation coefficients (R) above
0.7. This suggested that the main anthropogenic sources of
GEM might be coal combustion and biomass burning in
Shanghai, which was consistent with the previous studies in
the Yangtze River Delta (Qin et al., 2019; Tang et al., 2018).

BC, EC, and CO are mainly from fossil fuels combus-
tion and biomass burning and can be used as indicators of
the main anthropogenic sources of GEM. In order to ex-
plore the changes in the sources of GEM, we further investi-
gated the relationship between GEM and BC/EC/CO before,
during, and after the lockdown. As shown in Fig. 2, R be-

tween GEM and BC, GEM and CO, and GEM and EC dur-
ing and after the lockdown were lower than that before the
lockdown, suggesting the influence of anthropogenic sources
on GEM was weakened during the lockdown. Different
from BC, CO, and EC, which are overwhelmingly derived
from anthropogenic sources, natural sources such as surface
emission and ocean release also contribute significantly to
GEM (Obrist et al., 2018). Hence, the ratio of GEM/BC,
GEM/CO, and GEM/EC can be simply applied as indicators
to reveal the relative importance of anthropogenic versus nat-
ural sources. A higher GEM/BC, GEM/CO, and GEM/EC
ratio indicated the greater importance of natural sources, and
vice versa. As shown in Fig. 2k–m, the GEM/BC ratio sig-
nificantly increased from 1.9× 10−3 before the lockdown
to 3.2× 10−3 during the lockdown, the GEM/CO ratio sig-
nificantly increased from 3.1× 10−6 to 4.0× 10−6, and the
GEM/EC ratio significantly increased from 1.4× 10−3 to
2.2×10−3. The GEM/CO ratio has been used to analyze the
sources of GEM in many studies. In this study, the GEM/CO
ratio during the lockdown period was 4.0×10−6, which was
significantly higher than the anthropogenic GEM/CO emis-
sion ratio in mainland China, South Asia, and the Southeast
Asian peninsula, whose values were 2.7, 2.6, and 1.5×10−6,
respectively (Fu et al., 2015). These values were also higher
than the GEM/CO ratio observed in Nanjing (3.1×10−6) and
Beijing (1.5×10−6) in winter (Zhang et al., 2013; Zhu et al.,
2012). This corroborated that the impact of natural sources
on GEM could be more outstanding during the lockdown
than before and after the lockdown.

Previous studies have demonstrated the strong dependence
of natural surface emissions on meteorological factors such
as temperature, wind speed, and relative humidity (Pannu et
al., 2014; Lindberg et al., 2007; Gustin et al., 2005). We com-
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Figure 3. Relationship between GEM concentration and (a–c) temperature, (d–f) wind speed, and (g–i) PBL height before, during, and after
the lockdown.

pared the relationship between GEM and meteorological pa-
rameters before, during, and after the lockdown to investi-
gate the changes in natural sources of mercury. As shown
in Fig. 3a–c, there was no clear correlation between GEM
and temperature before the lockdown, while moderately high
correlations during and after the lockdown emerged with the
correlation coefficients (R2) of 0.43 and 0.71, respectively.
This might indicate the enhanced role of natural sources
on GEM concentrations due to the lockdown control mea-
sures. For wind speed (Fig. 3d–f), strongly negative correla-
tions were observed with GEM before and after the lock-
down but not during the lockdown. On the one hand, the
high wind speed was beneficial to the diffusion of air pollu-
tants in the atmosphere, which explained the negative corre-
lation between GEM and wind speed. On the other hand, the
high wind speed promoted the natural surface release of mer-
cury, partially canceling out the diffusion effect of the wind
speed, which induced the ambiguous relationship between
GEM and wind speed during the lockdown. The relationship
between GEM and PBL height was similar to that of wind
speed, showing strongly negative correlations before and af-
ter the lockdown while having weak correlations during the
lockdown (Fig. 3g–i). The increase in PBL height was ben-
eficial to the diffusion of GEM. While the increase in PBL

height usually occurred in the daytime when temperature was
high, which was conducive to the natural surface release of
mercury. Therefore, ambient GEM did not decrease signifi-
cantly with the increase in PBL height during the lockdown.

Overall, all the observational evidence possibly suggested
that the role of natural emissions on GEM was more man-
ifested due to the lockdown. However, all the results were
based on qualitative data analysis. In the following sections,
the machine learning and source apportionment methods will
be applied to quantify the contribution of anthropogenic and
natural sources to GEM during the three defined periods.

3.3 Understanding the drivers of GEM variation by
explainable machine learning

We further conducted machine learning simulations using the
trained artificial neural network (ANN), which has already
been established by training the long-term (2015–2019) ob-
servational data of GEM and other necessary environmen-
tal parameters (including SO2, NO2, CO, O3, PM2.5, tem-
perature, relative humidity, and wind speed) at the Dianshan
Lake site (Qin et al., 2022). Figure 4a–b show the comparison
of ANN simulated and observed GEM concentrations dur-
ing the whole study period and found that their correlation
coefficient is acceptable (R2

= 0.67). As shown in Fig. S5,
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we examined the performance of the ANN model before,
during, and after the lockdown. The correlations between
ANN simulated and observed GEM concentrations were also
acceptable, with correlation coefficients of 0.67, 0.59, and
0.63, respectively. Then we applied the SHapley Additive
exPlanations (SHAP) approach to uncover the mystery of
the machine learning “black box” model (see the methods
in Sect. 2.3). This approach has the potential to quantify the
global and local impacts of input features on model predic-
tions (Lundberg and Lee, 2017), which has been used in var-
ious fields (Mangalathu et al., 2020; Hou et al., 2022; Lund-
berg et al., 2018; Zhong et al., 2021; Wang et al., 2021).

We calculated the SHAP value of each feature to repre-
sent the global importance of the feature, which can be used
to indicate the general impact of various features across all
samples. As shown in Fig. 4c, by comparing the average ab-
solute SHAP values, PM2.5 ranked as the most important fea-
ture, which changed the simulated GEM concentrations by
0.30± 0.20 ng m−3, followed by CO and temperature with
the SHAP values of 0.16± 0.25 and 0.14± 0.09 ng m−3, re-
spectively. The average values of the remaining factors were
less than 0.1 ng m−3. We further investigated the relationship
between the SHAP value of each feature and its concen-
tration. As shown in Fig. 4d–f, with the increase in PM2.5,
CO, and SO2 concentrations, their corresponding SHAP val-
ues increased accordingly. Previous studies have shown that
GEM, PM2.5, CO, and SO2 shared common anthropogenic
sources, such as the combustion of fossil fuels and biomass
(Chong et al., 2019; Fu et al., 2015), thus interpreting the
positive effect of various anthropogenic emission sources on
GEM. A similar relationship was also found for temperature
and relative humidity with their corresponding SHAP values
(Fig. 4g–h). Since temperature and relative humidity are im-
portant factors affecting the natural release of GEM from nat-
ural surfaces (Pannu et al., 2014; Wang et al., 2016), the pos-
itive influence of natural surface emissions on GEM was ex-
pected. In contrast, the SHAP value of wind speed negatively
correlated with the magnitude of wind speed (Fig. 4i), thus
indicating the diffusion/accumulation effect of wind speed on
GEM. The SHAP values of NO2 and O3 did not show obvi-
ous correlations with their concentrations (Fig. 4j–k). One of
the main sources of NO2 was vehicle emissions, which con-
tributed little to GEM. As for O3, its oxidation on GEM was
also limited. Thus, neither NO2 nor O3 exhibited consider-
able effects on regulating the GEM variation.

To more explicitly identify the drivers to the dynamic vari-
ation in GEM, a process analysis of GEM pollution episodes
was conducted. One pollution episode was defined as having
its average GEM concentration for more than 35 % of the day
before the episode and lasting for more than 3 d. Based on
this criterion, two pollution episodes (PE1 and PE2) before
the lockdown, one pollution episode (PE3) during the lock-
down, and one pollution episode (PE4) after the lockdown
were selected (Fig. S6). As shown in Fig. 5, the drivers of the
first two pollution episodes were significantly different from

the last two. The main influencing factors in PE1 were PM2.5
and CO, which represented anthropogenic sources, contribut-
ing 0.65 and 0.51 ng m−3 to the GEM variation, respectively.
Similar to PE1, PM2.5 and CO in PE2 contributed the most
to the GEM variation in 0.35 and 0.12 ng m−3, respectively.
This indicated that the two mercury pollution episodes before
the lockdown were mainly driven by anthropogenic sources.
In contrast, in PE3 and PE4, temperature ranked the first
among all the variables, with a contribution to GEM of 0.10
and 0.14 ng m−3, respectively. This suggested that these two
pollution episodes during and after the lockdown occurred
under the dominance of natural sources.

In addition, we found that there was a tradeoff between the
SHAP value of temperature and the SHAP value of PM2.5
and CO. As shown in Fig. 5b–c, the SHAP value of tempera-
ture decreased with the increase in the SHAP value of PM2.5
and CO throughout the study period. This probably suggests
that the increase in anthropogenic GEM emissions may in-
hibit the release of natural sources to some extent, which will
be discussed later.

3.4 Response of natural release of GEM to the
lockdown

To quantify the changes in the contribution of different
sources to GEM, we applied the PMF model to analyze the
sources of GEM during the whole study period. Figure S7
shows the resolved factors and factor loadings, which were
similar to the results by previous study at the same site (Qin
et al., 2020). A total of six sources were resolved, namely
coal combustion, with high loadings of SO2−

4 , Pb, K+, As,
and Se, natural surface emissions, with high loadings of tem-
perature and NH3, vehicle emissions, with high loadings of
NO, ship emissions, with high loading of Ni, iron and steel
production, with high loadings of Fe, Cr, and Mn, and cement
production, with high loading of Ca. The mean contributions
of the six factors above to GEM were 55 %, 28 %, 7 %, 5 %,
3 %, and 3 %, respectively (Fig. S7). To evaluate the uncer-
tainty in the PMF results, the Fpeak model run at the strength
of 0.5,−0.5, 1, and−1 were conducted by using the rotation
tools in PMF. The changes in Q value (dQ) due to the Fpeak
rotation were less than 1 % of the base run Q (robust) value
(Table S3), which is less than the benchmark value of 5 %.
The profiles and contributions of each source were also ex-
amined, and there were no significant differences between
the factor contributions of the base run and rotation results,
especially for coal combustion and natural surface emissions.
Hence, the base run results were used in this study.

Figure 6a shows the time series of apportioned GEM con-
centrations and relative contributions from six sources dur-
ing three periods. Significant changes in the sources of GEM
were observed due to the lockdown. The contribution of coal
combustion fell from 60 % before the lockdown to 51 % dur-
ing the lockdown and 48 % after the lockdown. On the con-
trary, the relative contribution of natural surface emissions
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Figure 4. (a) Time series of ANN simulated and observed GEM concentrations during the study period. (b) Linear correlation between
observed and ANN simulated GEM concentrations. (c) The ranking of input features calculated via the SHAP algorithm. (d–k) Relationship
between the SHAP value and the corresponding concentration of each feature.

Figure 5. (a) Time series and box plots of each feature’s SHAP value during the four mercury pollution episodes. (b–c) Relationship between
the SHAP value of temperature and SHAP value of CO and PM2.5 during the whole study period.
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Figure 6. (a) Daily average concentrations of apportioned GEM from six sources based on PMF modeling. Pie charts represent the relative
contribution of the six sources to GEM during three periods. (b) Changes in the absolute contribution of natural and anthropogenic sources
to GEM before and during the lockdown. (c) Relationship between absolute contribution of natural surface emissions and anthropogenic
sources to GEM during the whole study period.

rose significantly from 20 % before the lockdown to 39 %
during the lockdown, and then dropped slightly to 33 % af-
ter the lockdown. In addition to the increased relative con-
tribution of natural surface emissions, its absolute contribu-
tion to the GEM concentration increased significantly from
0.55 ng m−3 before the lockdown to 0.80 ng m−3 during the
lockdown, i.e., a 44 % increase (Fig. 6b). Considering that
the synoptic conditions varied little before and during the
lockdown, both increases in the absolute and relative con-
tribution of natural surface emissions to GEM during the
lockdown should be stimulated by the significant reduction
in anthropogenic mercury emissions. Indeed, Fig. 6c shows
that the absolute contribution of natural surface emissions to
GEM and the contribution of anthropogenic sources exhib-
ited a significant negative correlation throughout the study
period (R2

= 0.86). This indicated that the significant reduc-
tion in the anthropogenic emissions would lead to a signifi-
cant decrease in the GEM concentration, thereby disrupting
the exchange balance of mercury between the natural sur-
faces (including soil, vegetation, and waterbodies, etc.) and
the atmosphere, resulting in an increase in natural surface re-
lease to compensate for the decrease in GEM concentration
in the atmosphere.

4 Conclusions and implications

In this work, we investigated the changes in the impact of
anthropogenic and natural sources on GEM in the suburbs
of eastern China in early 2020. Due to the COVID-19 lock-
down, GEM was significantly reduced by 0.72 ng m−3 com-

pared to that before the lockdown. However, the reduction
extent of GEM was not as strong as most of the other gaseous
pollutants (NO2 and CO) and primary aerosol species (EC,
BC, Pb, and As). Before the lockdown, when anthropogenic
emissions dominated, GEM showed no correlation with tem-
perature and negative correlations with wind speed and the
height of PBL. In contrast, GEM showed a significant corre-
lation with temperature, while the relationship between GEM
and wind speed/PBL disappeared during the lockdown, sug-
gesting the enhanced natural emissions of mercury. By ap-
plying a machine learning model, GEM was well simulated,
and the results were interpreted by the SHapley Additive ex-
Planations approach. It was found that the mercury pollution
episodes before the lockdown were driven by anthropogenic
sources, while they were mainly driven by natural sources
during and after the lockdown. Source apportionment results
showed that the relative contribution of natural sources to
GEM during the lockdown reached 39 %, which was sig-
nificantly higher than that before the lockdown (20 %). The
absolute contribution of natural sources to GEM during the
lockdown was about 0.80 ng m−3, which was 44 % higher
than that before the lockdown. Finally, we revealed the neg-
ative correlation between the absolute contribution of natu-
ral sources and anthropogenic sources, suggesting the natu-
ral release of mercury could be enhanced in response to the
significant reduction in anthropogenic mercury emissions.

In the long-term, the surface ambient mercury concentra-
tion in the Northern Hemisphere decreased by 30 %–40 %
from 1990 to 2010 (Slemr et al., 2011; Soerensen et al., 2012;
Cole et al., 2014). From 2013 to 2017, the gaseous total mer-
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cury concentration in China decreased by about 12 % (Liu
et al., 2019). It has been long recognized that the mitigation
of anthropogenic mercury emissions regulated this global or
regional trend, while the role of natural mercury emissions
is less known. Specifically, the response of natural mercury
release to the reduction in ambient Hg0 concentration is am-
biguous, which limits a better understanding of the role of
natural sources in global mercury cycling. In this study, the
COVID-19 lockdown provided a natural experiment for as-
sessing the dynamic behavior of natural and anthropogenic
contributions to gaseous elementary mercury by different
means. As shown in Fig. S8, the sum of the SHAP val-
ues of CO and PM2.5 exhibited a good positive correlation,
with the concentration of GEM contributed by anthropogenic
sources based on PMF modeling (R2

= 0.72). Moderate cor-
relation was also derived between the SHAP value of tem-
perature and the concentration of GEM contributed by natu-
ral sources (R2

= 0.50). This indicated that the results of the
machine learning with an explainable approach and the tradi-
tional receptor model were consistent and also corroborated
each other. This study highlighted that machine learning cou-
pled with reliable interpretation methods can well quantify
the role of different factors in the process of air pollution,
showing great potential in the fields of atmospheric science.
However, we realize that the performance of machine learn-
ing in simulating atmospheric mercury in this study has yet
to be improved. Continuous long-term observations of atmo-
spheric mercury with more monitoring sites are desired to
ensure a more adequate training data set. Also, more rele-
vant environment parameters for GEM are needed to further
improve the training performance of the machine learning
model. In addition, different machine learning methods such
as artificial neural network, decision tree, random forest, and
Bayesian learning should be evaluated to choose an optimal
solution.

The natural release of mercury mainly comes from the
exchange between the natural surfaces and the atmosphere,
including the following two processes: (1) the formation
of volatile Hg0 in the surface and (2) the mass transfer of
Hg0 between the interfaces (Zhu et al., 2016). At locations
with high ambient Hg0 concentrations (e.g., mining areas
and landfills), the exchange of mercury between the surface
and the atmosphere is always dominated by deposition, re-
gardless of changes in meteorological conditions (Bash and
Miller, 2007; Wang et al., 2007; Zhu et al., 2013). Fluctua-
tions in ambient Hg0 concentrations can change the Hg0 con-
centration gradient at the interfaces and thus affect the Hg0

exchange flux (Xin and Gustin, 2007). The results of this
study imply that the decline in global anthropogenic mer-
cury emissions could stimulate increases in natural surface
releases, which may pose challenges to future control of at-
mospheric mercury pollution.
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