Articles | Volume 22, issue 24
https://doi.org/10.5194/acp-22-15729-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-15729-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Driving mechanisms for the El Niño–Southern Oscillation impact on stratospheric ozone
Earth Physics and Astrophysics Department, Universidad Complutense de
Madrid, Madrid, Spain
Natalia Calvo
Earth Physics and Astrophysics Department, Universidad Complutense de
Madrid, Madrid, Spain
Marta Abalos
Earth Physics and Astrophysics Department, Universidad Complutense de
Madrid, Madrid, Spain
Related authors
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
EGUsphere, https://doi.org/10.5194/egusphere-2025-3611, https://doi.org/10.5194/egusphere-2025-3611, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are known to follow a sustained wave dissipation in the stratosphere, which depends on both the tropospheric and stratospheric states. However, the relative role of each state is still unclear. Using a new set of subseasonal to seasonal forecasts, we show that the stratospheric state does not drastically affect the precursors of three recent SSWs, but modulates the stratospheric wave activity, with impacts depending on SSW features.
Beth Dingley, James A. Anstey, Marta Abalos, Carsten Abraham, Tommi Bergman, Lisa Bock, Sonya Fiddes, Birgit Hassler, Ryan J. Kramer, Fei Luo, Fiona M. O'Connor, Petr Šácha, Isla R. Simpson, Laura J. Wilcox, and Mark D. Zelinka
EGUsphere, https://doi.org/10.5194/egusphere-2025-3189, https://doi.org/10.5194/egusphere-2025-3189, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This manuscript defines as a list of variables and scientific opportunities which are requested from the CMIP7 Assessment Fast Track to address open atmospheric science questions. The list reflects the output of a large public community engagement effort, coordinated across autumn 2025 through to summer 2025.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Y. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 6, 171–195, https://doi.org/10.5194/wcd-6-171-2025, https://doi.org/10.5194/wcd-6-171-2025, 2025
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere is coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too weak; however downward coupling from the lower stratosphere to the near surface is too strong.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Jacob W. Maddison, Marta Abalos, David Barriopedro, Ricardo García-Herrera, Jose M. Garrido-Perez, and Carlos Ordóñez
Weather Clim. Dynam., 2, 675–694, https://doi.org/10.5194/wcd-2-675-2021, https://doi.org/10.5194/wcd-2-675-2021, 2021
Short summary
Short summary
Air stagnation occurs when an air mass becomes settled over a region and precipitation is suppressed. Pollutant levels can rise during stagnation. The synoptic- to large-scale influence on European air stagnation and pollution is explored here. We show that around 60 % of the monthly variability in air stagnation and pollutants can be explained by dynamical indices describing the atmospheric circulation. The weather systems most related to stagnation are different for regions across Europe.
Daniele Minganti, Simon Chabrillat, Yves Christophe, Quentin Errera, Marta Abalos, Maxime Prignon, Douglas E. Kinnison, and Emmanuel Mahieu
Atmos. Chem. Phys., 20, 12609–12631, https://doi.org/10.5194/acp-20-12609-2020, https://doi.org/10.5194/acp-20-12609-2020, 2020
Short summary
Short summary
The climatology of the N2O transport budget in the stratosphere is studied in the transformed Eulerian mean framework across a variety of datasets: a chemistry climate model, a chemistry transport model driven by four reanalyses and a chemical reanalysis. The impact of vertical advection on N2O agrees well in the datasets, but horizontal mixing presents large differences above the Antarctic and in the whole Northern Hemisphere.
Cited articles
Abalos, M., Randel, W. J., Kinnison, D. E., and Serrano, E.: Quantifying tracer transport in the tropical lower stratosphere using WACCM, Atmos. Chem. Phys., 13, 10591–10607, https://doi.org/10.5194/acp-13-10591-2013, 2013.
Albers, J. R., Butler, A. H., Langford, A. O., Elsbury, D., and Breeden, M. L.: Dynamics of ENSO-driven stratosphere-to-troposphere transport of ozone over North America, Atmos. Chem. Phys., 22, 13035–13048, https://doi.org/10.5194/acp-22-13035-2022, 2022.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere
Dynamics, Academic Press, Orlando, Florida, 489 pp., ISBN 978-0-12-058575-8, 1987.
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El
Niño Modoki and its possible teleconnection, J. Geophys. Res.-Ocean.,
112, 1–27, https://doi.org/10.1029/2006JC003798, 2007.
Cagnazzo, C., Manzini, E., Calvo, N., Douglass, A., Akiyoshi, H., Bekki, S., Chipperfield, M., Dameris, M., Deushi, M., Fischer, A. M., Garny, H., Gettelman, A., Giorgetta, M. A., Plummer, D., Rozanov, E., Shepherd, T. G., Shibata, K., Stenke, A., Struthers, H., and Tian, W.: Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of Chemistry Climate Models, Atmos. Chem. Phys., 9, 8935–8948, https://doi.org/10.5194/acp-9-8935-2009, 2009.
Calvo, N., García-Herrera, R., and Garcia, R. R.: The ENSO signal in
the stratosphere, Ann. N. Y. Acad. Sci., 1146, 16–31,
https://doi.org/10.1196/annals.1446.008, 2008.
Calvo, N., Giorgetta, M. A., Garcia-Herrera, R., and Manzini, E.:
Nonlinearity of the combined warm ENSO and QBO effects on the Northern
Hemisphere polar vortex in MAECHAM5 simulations, J. Geophys. Res.-Atmos.,
114, 1–11, https://doi.org/10.1029/2008JD011445, 2009.
Calvo, N., Garcia, R. R., Randel, W. J., and Marsh, D. R.: Dynamical
mechanism for the increase in tropical upwelling in the lowermost tropical
stratosphere during warm ENSO events, J. Atmos. Sci., 67, 2331–2340,
https://doi.org/10.1175/2010JAS3433.1, 2010.
Calvo, N., Polvani, L. M., and Solomon, S.: On the surface impact of Arctic
stratospheric ozone extremes, Environ. Res. Lett., 10, 9,
https://doi.org/10.1088/1748-9326/10/9/094003, 2015.
Calvo, N., Iza, M., Hurwitz, M. M., Manzini, E., Peña-Ortiz, C., Butler,
A. H., Cagnazzo, C., Ineson, S., and Garfinkel, C. I.: Northern hemisphere
stratospheric pathway of different El Niño flavors in
stratosphere-resolving CMIP5 models, J. Climate, 30, 4351–4371,
https://doi.org/10.1175/JCLI-D-16-0132.1, 2017.
Camp, C. D. and Tung, K. K.: Stratospheric polar warming by ENSO in winter:
A statistical study, Geophys. Res. Lett., 34, 2–5,
https://doi.org/10.1029/2006GL028521, 2007.
Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J. Y.,
Braconnot, P., Cole, J., Dewitte, B., Giese, B., Guilyardi, E., Jin, F. F.,
Karnauskas, K., Kirtman, B., Lee, T., Schneider, N., Xue, Y., and Yeh, S.
W.: Understanding enso diversity, B. Am. Meteorol. Soc., 96, 921–938,
https://doi.org/10.1175/BAMS-D-13-00117.1, 2015.
Capotondi, A., Wittenberg, A. T., Kug, J. S., Takahashi, K., and McPhaden,
M. J.: ENSO Diversity, Geophys. Monogr. Ser., 253, 65–86,
https://doi.org/10.1002/9781119548164.ch4, 2020.
Charlton, A. J. and Polvani, L. M.: A New Look at Stratospheric Sudden
Warmings. Part I: Climatology and Modeling Benchmarks, J. Climate, 20,
449–469, https://doi.org/10.1175/jcli3996.1, 2007.
Chipperfield, M. P., Gray, L. J., Kinnersley, J. S., and Zawodny, J.: A
Two-Dimensional Model Study of the QBO Signal in SAGE II NO2 and O3,
Geophys. Res. Lett., 21, 589–592,
https://doi.org/https://doi.org/10.1029/94GL00211, 1994.
CSL: Chemistry & Climate Processes: Products, SWOOSH: Stratospheric Water and OzOne Satellite Homogenized data set, CSL [data set], https://www.esrl.noaa.gov/csd/groups/csd8/swoosh/, last access: September 2020.
Davis, S. M., Rosenlof, K. H., Hassler, B., Hurst, D. F., Read, W. G., Vömel, H., Selkirk, H., Fujiwara, M., and Damadeo, R.: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies, Earth Syst. Sci. Data, 8, 461–490, https://doi.org/10.5194/essd-8-461-2016, 2016.
Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y.,
Kobayashi, C., Long, C., Manney, G. L., Nash, E. R., Potter, G. L.,
Tegtmeier, S., Wang, T., Wargan, K., and Wright, J. S.: Assessment of upper
tropospheric and stratospheric water vapor and ozone in reanalyses as part
of S-RIP, 12743–12778 pp., https://doi.org/10.5194/acp-17-12743-2017, 2017.
de la Cámara, A., Abalos, M., Hitchcock, P., Calvo, N., and Garcia, R. R.: Response of Arctic ozone to sudden stratospheric warmings, Atmos. Chem. Phys., 18, 16499–16513, https://doi.org/10.5194/acp-18-16499-2018, 2018.
Diallo, M., Konopka, P., Santee, M. L., Müller, R., Tao, M., Walker, K. A., Legras, B., Riese, M., Ern, M., and Ploeger, F.: Structural changes in the shallow and transition branch of the Brewer–Dobson circulation induced by El Niño, Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, 2019.
Dietmüller, S., Garny, H., Plöger, F., Jöckel, P., and Cai, D.: Effects of mixing on resolved and unresolved scales on stratospheric age of air, Atmos. Chem. Phys., 17, 7703–7719, https://doi.org/10.5194/acp-17-7703-2017, 2017.
Domeisen, D. I. V., Garfinkel, C. I., and Butler, A. H.: The Teleconnection
of El Niño Southern Oscillation to the Stratosphere, Rev. Geophys., 57,
5–47, https://doi.org/10.1029/2018RG000596, 2019.
Eyring, V., Lamarque, J.-F., Hess, P., Arfeuille, F., Bowman, K.,
Chipperfiel, M. P., Duncan, B., Fiore, A., Gettelman, A., Giorgetta, M. A.,
Granier, C., Hegglin, M., Kinnison, D., Kunze, M., Langematz, U., Luo, B.,
Martin, R., Matthes, K., Newman, P. A., Peter, T., Robock, A., Ryerson, T.,
Saiz-Lopez, A., Salawitch, R., Schultz, M., Shepherd, T. G., Shindell, D.,
Staehelin, J., Tegtmeier, S., Thomason, L., Tilmes, S., Vernier, J.-P.,
Waugh, D. W., and Young, P. J.: Overview of IGAC/SPARC Chemistry-Climate
Model Initiative (CCMI) Community Simulations in Support of Upcoming Ozone
and Climate Assessments, SPARC Newsl., 40, 48–66, 2013.
Free, M. and Seidel, D. J.: Observed El Niño-Southern Oscillation
temperature signal in the stratosphere, J. Geophys. Res.-Atmos., 114, D23108,
https://doi.org/10.1029/2009JD012420, 2009.
García-Herrera, R., Calvo, N., Garcia, R. R., and Giorgetta, M. A.:
Propagation of ENSO temperature signals into the middle atmosphere: A
comparison of two general circulation models and ERA-40 reanalysis data, J.
Geophys. Res.-Atmos., 111, 1–14, https://doi.org/10.1029/2005JD006061,
2006.
Garcia, R. R. and Solomon, S.: A numerical model of the zonally averaged
dynamical and chemical structure of the middle atmosphere. J. Geophys.
Res., 88, 1379–1400, https://doi.org/10.1029/JC088iC02p01379, 1983.
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á., and
Murphy, D. J.: Modification of the gravity wave parameterization in the
Whole Atmosphere Community Climate Model: Motivation and results, J. Atmos.
Sci., 74, 275–291, https://doi.org/10.1175/JAS-D-16-0104.1, 2017.
Garfinkel, C. I., Hurwitz, M. M., Waugh, D. W., and Butler, A. H.: Are the
teleconnections of Central Pacific and Eastern Pacific El Niño distinct
in boreal wintertime?, Clim. Dynam., 41, 1835–1852,
https://doi.org/10.1007/s00382-012-1570-2, 2013.
Garny, H., Birner, T., Bönisch, H., and Bunzel, F.: The effects of
mixing on age of air, J. Geophys. Res.-Atmos., 119, 7015–7034,
https://doi.org/10.1002/2013JD021417, 2014.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavgM_2d_slv_Nx: 2d,Monthly mean,Time-Averaged,Single-Level, Assimilation, Single-Level Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/AP1B0BA5PD2K, 2015.
Hegyi, B. M., Deng, Y., Black, R. X., and Zhou, R.: Initial transient
response of the winter polar stratospheric vortex to idealized equatorial
pacific sea surface temperature anomalies in thwe NCAR WACCM, J. Climate, 27,
2699–2713, https://doi.org/10.1175/JCLI-D-13-00289.1, 2014.
Hong, H.-J. and Reichler, T.: Local and remote response of ozone to Arctic stratospheric circulation extremes, Atmos. Chem. Phys., 21, 1159–1171, https://doi.org/10.5194/acp-21-1159-2021, 2021.
Hood, L. L., Soukharev, B. E., and McCormack, J. P.: Decadal variability of
the tropical stratosphere: Secondary influence of the El NiñoSouthern
Oscillation, J. Geophys. Res.-Atmos., 115, 1–16,
https://doi.org/10.1029/2009JD012291, 2010.
Hurwitz, M. M., Calvo, N., Garfinkel, C. I., Butler, A. H., Ineson, S.,
Cagnazzo, C., Manzini, E., and Peña-Ortiz, C.: Extra-tropical
atmospheric response to ENSO in the CMIP5 models, Clim. Dynam., 43,
3367–3376, https://doi.org/10.1007/s00382-014-2110-z, 2014.
Ivy, D. J., Solomon, S., Calvo, N., and Thompson, D. W. J.: Observed
connections of Arctic stratospheric ozone extremes to Northern Hemisphere
surface climate, Environ. Res. Lett., 12, 2,
https://doi.org/10.1088/1748-9326/aa57a4, 2017.
Iza, M. and Calvo, N.: Role of Stratospheric Sudden Warmings on the response
to Central Pacific El Niño, Geophys. Res. Lett., 42, 2482–2489,
https://doi.org/10.1002/2014GL062935, 2015.
Iza, M., Calvo, N., and Manzini, E.: The stratospheric pathway of La
Niña, J. Climate, 29, 8899–8914,
https://doi.org/10.1175/JCLI-D-16-0230.1, 2016.
Japan Meteorological Agency/Japan: JRA-55: Japanese 55-year Reanalysis, Monthly Means and Variances. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D60G3H5B, 2013.
Kao, H. Y. and Yu, J. Y.: Contrasting Eastern-Pacific and Central-Pacific
types of ENSO, J. Climate, 22, 615–632,
https://doi.org/10.1175/2008JCLI2309.1, 2009.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Kiyotoshi, T.:
The JRA-55 reanalysis: General specifications and basic characteristics, J.
Meteorol. Soc. Japan, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001,
2015.
Larkin, N. K. and Harrison, D. E.: Global seasonal temperature and
precipitation anomalies during El Niño autumn and winter, Geophys. Res.
Lett., 32, 1–4, https://doi.org/10.1029/2005GL022860, 2005.
Li, Y. and Lau, N. C.: Influences of enso on stratospheric variability, and
the descent of stratospheric perturbations into the lower troposphere, J.
Climate, 26, 4725–4748, https://doi.org/10.1175/JCLI-D-12-00581.1, 2013.
Lin, J. and Qian, T.: Impacts of the ENSO Lifecycle on Stratospheric Ozone
and Temperature, Geophys. Res. Lett., 46, 10646–10658,
https://doi.org/10.1029/2019GL083697, 2019.
Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., and Roeckner, E.:
The influence of sea surface temperatures on the northern winter
stratosphere: Ensemble simulations with the MAECHAM5 model, J. Climate, 19,
3863–3881, https://doi.org/10.1175/JCLI3826.1, 2006.
Marsh, D. R. and Garcia, R. R.: Attribution of decadal variability in
lower-stratospheric tropical ozone, Geophys. Res. Lett., 34, 1–5,
https://doi.org/10.1029/2007GL030935, 2007.
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., and
Polvani, L. M.: Climate change from 1850 to 2005 simulated in CESM1(WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013.
Mezzina, B., Palmeiro, F. M., García-Serrano, J., Bladé, I.,
Batté, L., and Benassi, M.: Multi-model assessment of the late-winter
stratospheric response to El Niño and La Niña, Clim. Dynam., 58, 1987–2007,
https://doi.org/10.1007/s00382-021-05836-3, 2021.
Naoe, H., Deushi, M., Yoshida, K., and Shibata, K.: Future changes in the
ozone quasi-biennial oscillation with increasing GHGs and ozone recovery in
CCMI simulations, J. Climate, 30, 6977–6997,
https://doi.org/10.1175/JCLI-D-16-0464.1, 2017.
NCAR: Atmospheric Chemistry observations & modeling, CCMI Output, https://www2.acom.ucar.edu/gcm/ccmi-output, NCAR [data set], last access: February 2020.
Oman, L. D., Douglass, A. R., Ziemke, J. R., Rodriguez, J. M., Waugh, D. W.,
and Nielsen, J. E.: The ozone response to enso in aura satellite
measurements and a chemistry-climate simulation, J. Geophys. Res.-Atmos.,
118, 965–976, https://doi.org/10.1029/2012JD018546, 2013.
Plumb, R. A.: Stratospheric transport, J. Meteorol. Soc. Japan, 80,
793–809, https://doi.org/10.2151/jmsj.80.793, 2002.
Plumb, R. A.: Tracer interrelationships in the stratosphere, Rev. Geophys.,
45, 1–33, https://doi.org/10.1029/2005RG000179, 2007.
Pyle, J. A., Braesicke, P., and Zeng, G.: Dynamical variability in the
modelling of chemistry-climate interactions, Faraday Discuss., 130, 27–39,
https://doi.org/10.1039/b417947c, 2005.
Randel, W. J., Garcia, R. R., Calvo, N., and Marsh, D.: ENSO influence on
zonal mean temperature and ozone in the tropical lower stratosphere,
Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL039343, 2009.
Salby, M. L. and Callaghan, P. F.: On the wintertime increase of Arctic
ozone: Relationship to changes of the polar-night vortex, J. Geophys. Res.-Atmos., 112, 1–11, https://doi.org/10.1029/2006JD007948, 2007.
Shibata, K., Deushi, M., Sekiyama, T. T., and Yoshimura, H.: Development of
an MRI chemical transport model for the study of stratospheric chemistry,
Pap. Meteorol. Geophys., 55, 75–119,
https://doi.org/10.2467/mripapers.55.75, 2005.
Song, K. and Son, S. W.: Revisiting the ENSO-SSW relationship, J. Climate, 31,
2133–2143, https://doi.org/10.1175/JCLI-D-17-0078.1, 2018.
Stone, K. A., Solomon, S., Kinnison, D. E., Baggett, C. F., and Barnes, E.
A.: Prediction of Northern Hemisphere Regional Surface Temperatures Using
Stratospheric Ozone Information, J. Geophys. Res.-Atmos., 124, 5922–5933,
https://doi.org/10.1029/2018JD029626, 2019.
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N. C., and
Ropelewski, C.: Progress during TOGA in understanding and modeling global
teleconnections associated with tropical sea surface temperatures, J.
Geophys. Res.-Ocean., 103, 14291–14324, https://doi.org/10.1029/97jc01444,
1998.
Wallace, J. M., Panetta, R. L., and Estberg, J.: Representation of the
Equatorial Stratospheric Quasi-Biennial Oscillation in EOF Phase Space, J.
Atmos. Sci., 50, 1751–1762,
https://doi.org/10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2, 1993.
Weinberger, I., Garfinkel, C. I., White, I. P., and Oman, L. D.: The
salience of nonlinearities in the boreal winter response to ENSO: Arctic
stratosphere and Europe, Clim. Dynam., 53, 4591–4610,
https://doi.org/10.1007/s00382-019-04805-1, 2019.
Xie, F., Li, J., Tian, W., Feng, J., and Huo, Y.: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere, Atmos. Chem. Phys., 12, 5259–5273, https://doi.org/10.5194/acp-12-5259-2012, 2012.
Xie, F., Zhang, J., Li, X., Li, J., Wang, T., and Xu, M.: Independent and
joint influences of eastern Pacific El Niño–southern oscillation and
quasi-biennial oscillation on Northern Hemispheric stratospheric ozone, Int.
J. Climatol., 40, 5289–5307, https://doi.org/10.1002/joc.6519, 2020.
Zhang, J., Zhang, C., Zhang, K., Xu, M., Duan, J., Chipperfield, M. P.,
Feng, W., Zhao, S., and Xie, F.: The role of chemical processes in the
quasi-biennial oscillation (QBO) signal in stratospheric ozone, Atmos.
Environ., 244, 117906, https://doi.org/10.1016/j.atmosenv.2020.117906, 2021.
Short summary
The impact of different El Niño flavors (eastern (EP) and central (CP) Pacific El Niño) and La Niña on the stratospheric ozone is studied in a state-of-the-art chemistry–climate model. Ozone reduces in the tropics and increases in the extratropics when an EP El Niño event occurs, the opposite of La Niña. However, CP El Niño has no impact on extratropical ozone. These ozone variations are driven by changes in the stratospheric transport circulation, with an important contribution of mixing.
The impact of different El Niño flavors (eastern (EP) and central (CP) Pacific El Niño) and La...
Altmetrics
Final-revised paper
Preprint