Articles | Volume 22, issue 21
https://doi.org/10.5194/acp-22-14059-2022
https://doi.org/10.5194/acp-22-14059-2022
Research article
 | 
03 Nov 2022
Research article |  | 03 Nov 2022

Inverse modelling of Chinese NOx emissions using deep learning: integrating in situ observations with a satellite-based chemical reanalysis

Tai-Long He, Dylan B. A. Jones, Kazuyuki Miyazaki, Kevin W. Bowman, Zhe Jiang, Xiaokang Chen, Rui Li, Yuxiang Zhang, and Kunna Li

Data sets

Chemical Reanalysis Products K. Miyazaki, K. Bowman, T. Sekiya, H. Eskes, F. Boersma, H. Worden, N. Livesey, V. H. Payne, K. Sudo, Y. Kanaya, M. Takigawa, and K. Ogochi https://doi.org/10.25966/9qgv-fe81

ERA5 hourly data on single levels from 1959 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.adbb2d47

Model settings and surface measurements for air quality study Zhe Jiang https://doi.org/10.5281/zenodo.5030857

Model code and software

Unet_Chinese_NOx Tai-Long He https://doi.org/10.5281/zenodo.7145714

Download
Short summary
We use a deep-learning (DL) model to estimate Chinese NOx emissions by combining satellite analysis and in situ measurements. Our results are consistent with conventional analyses of Chinese NOx emissions. Comparison with mobility data shows that the DL model has a better capability to capture changes in NOx. We analyse Chinese NOx emissions during the COVID-19 pandemic lockdown period. Our results illustrate the potential use of DL as a complementary tool for conventional air quality studies.
Altmetrics
Final-revised paper
Preprint