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Abstract. Nitrogen dioxide (NO2) column density measurements from satellites have been widely used in con-
straining emissions of nitrogen oxides (NOx =NO+NO2). However, the utility of these measurements is im-
pacted by reduced observational coverage due to cloud cover and their reduced sensitivity toward the surface.
Combining the information from satellites with surface observations of NO2 will provide greater constraints on
emission estimates of NOx . We have developed a deep-learning (DL) model to integrate satellite data and in situ
observations of surface NO2 to estimate NOx emissions in China. A priori information for the DL model was
obtained from satellite-derived emissions from the Tropospheric Chemistry Reanalysis (TCR-2). A two-stage
training strategy was used to integrate in situ measurements from the China Ministry of Ecology and Envi-
ronment (MEE) observation network with the TCR-2 data. The DL model is trained from 2005 to 2018 and
evaluated for 2019 and 2020. The DL model estimated a source of 19.4 Tg NO for total Chinese NOx emissions
in 2019, which is consistent with the TCR-2 estimate of 18.5± 3.9 Tg NO and the 20.9 Tg NO suggested by the
Multi-resolution Emission Inventory for China (MEIC). Combining the MEE data with TCR-2, the DL model
suggested higher NOx emissions in some of the less-densely populated provinces, such as Shaanxi and Sichuan,
where the MEE data indicated higher surface NO2 concentrations than TCR-2. The DL model also suggested a
faster recovery of NOx emissions than TCR-2 after the Chinese New Year (CNY) holiday in 2019, with a recov-
ery time scale that is consistent with Baidu “Qianxi” mobility data. In 2020, the DL-based analysis estimated
about a 30 % reduction in NOx emissions in eastern China during the COVID-19 lockdown period, relative to
pre-lockdown levels. In particular, the maximum emission reductions were 42 % and 30 % for the Jing-Jin-Ji
(JJJ) and the Yangtze River Delta (YRD) mega-regions, respectively. Our results illustrate the potential utility of
the DL model as a complementary tool for conventional data-assimilation approaches for air quality applications.
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1 Introduction

Nitrogen oxides (NOx =NO+NO2) are a family of pri-
mary air pollutants that are directly involved in the forma-
tion of other air pollutants, such as tropospheric ozone and
secondary inorganic aerosols. Emitted by anthropogenic and
natural sources on the surface, NOx also has sources from
lightning in the free troposphere (Murray, 2016). Satellite
observations of tropospheric NO2 columns have been widely
used during the past 2 decades to constrain NOx emissions
(referred to as “top-down” emissions). Martin et al. (2003)
used a mass balance approach with the GEOS-Chem global
chemical transport model (CTM) to relate changes in the
NO2 column to NOx emissions at the surface. They showed
that the top-down analysis could reduce regional uncertain-
ties in the a priori NOx emissions. Satellite-derived NOx

emissions have been obtained by several subsequent studies
using a similar mass balance approach (Bertram et al., 2005;
Konovalov et al., 2006; Kim et al., 2006; Martin et al., 2006;
Toenges-Schuller et al., 2006; Boersma et al., 2008). Ad-
vanced data-assimilation methods have also been applied to
obtain satellite-based emission estimates of NOx . For exam-
ple, the four-dimensional variational (4D-Var) method uses
a CTM and its adjoint to propagate the differences between
satellite data and simulation to the a priori estimate of NOx

emissions (Müller and Stavrakou, 2005; Kurokawa et al.,
2009; Chai et al., 2009; Qu et al., 2019). The Kalman filter
is another widely used method, which employs information
about the error covariance in the forecast of the trace gases to
update atmospheric quantities in the CTMs (Napelenok et al.,
2008; Miyazaki et al., 2020a; Wu et al., 2020).

Despite the range of inverse modelling approaches used to
estimate NOx emissions from satellite observations, they all
suffer from potential limitations associated with the CTMs
employed in the inversion analyses. For example, Lin and
McElroy (2010) found that a different scheme for mixing in
the planetary boundary layer could lead to 3 %–14 % dif-
ferences in the top-down NOx emission budgets for East
China. Deep convective transport in the free troposphere,
which can be challenging to accurately simulate, could verti-
cally transport NO2 generated by lightning activities, which
results in greater nonlinearity between NOx emissions and
NO2 columns (Choi et al., 2005; Nault et al., 2017). The life-
time of NOx varies diurnally and seasonally, and discrepan-
cies in the ability of a CTM to capture these variations will
contribute to uncertainties in the top-down NOx emission es-
timates (Beirle et al., 2011; de Foy et al., 2014; Liu et al.,
2016).

An additional limitation with the satellite-based top-down
emission estimates of NOx is that NO2 is highly concen-
trated near the surface, whereas satellite measurements have
lower sensitivity near the surface (Boersma et al., 2016). As
a result, it is challenging for satellite observations to capture
changes in surface NOx emissions. It has been suggested that
satellite NO2 measurements are blending information from

both surface emissions and atmospheric background of NO2
due to the low sensitivity of the satellite retrievals to NO2
near the surface (Li and Wang, 2019; Silvern et al., 2019; Qu
et al., 2021). In situ observations of surface NO2 are more
representative of local emissions, but typically have more
limited observational coverage. As a result, combining the
surface observations with the satellite data could offer greater
constraints on NOx emission estimates.

Here we use a deep-learning (DL) model to indirectly inte-
grate satellite data and in situ observations of surface NO2 to
estimate NOx emissions in China. Deep-learning and other
machine-learning models have been increasingly used in the
field of atmospheric science (Rasp et al., 2018; He et al.,
2022; Keller and Evans, 2019). These data-driven methods
show high skill in capturing the nonlinear relationship be-
tween correlated atmospheric quantities. Compared to con-
ventional data-assimilation systems, DL models are free of
errors in chemistry and the potential errors associated with
defective parameterization of subgrid-scale processes (Rasp
et al., 2018). Moreover, high-resolution data assimilation us-
ing conventional approaches is computationally expensive,
especially when dealing with large amounts of data, whereas
DL models show much higher computational efficiency for
high-resolution data-rich applications. In the present work,
we use a DL model to estimate Chinese NOx emissions us-
ing surface NO2 concentrations. We train the DL model twice
with different input information used in each training stage.
We use the two-stage transfer learning strategy to integrate
in situ NO2 observations from the China Ministry of Ecol-
ogy and Environment (MEE) network with the Tropospheric
Chemical Reanalysis (TCR-2) that assimilated satellite ob-
servations.

We focus on the 2019–2020 period, which overlaps with
the COVID-19 pandemic that led to the lockdown of over
one-third of Chinese cities in early 2020. Observations have
shown significant reductions of atmospheric abundances of
NO2 over China during this period (Bauwens et al., 2020;
Liu et al., 2020). The change in atmospheric NO2 implies
an anomalous change in emission of NOx , which provides a
unique opportunity to evaluate the utility of the DL model for
estimating NOx emissions. We evaluate the performance of
the DL model by analysing the predicted NOx emissions for
the normal year 2019 and the anomalous year 2020. Eval-
uation of the DL-based system utilized the dependent test-
ing data set from the TCR-2 standard product (based on
data from the Ozone Monitoring Instrument (OMI)), an up-
dated higher-resolution TCR-2 product constrained by the
TROPOspheric Monitoring Instrument (TROPOMI) mea-
surements, and the independent Baidu “Qianxi” mobile data
(Kraemer et al., 2020; Zhang et al., 2021).

The outline of the paper is as follows. Section 2 describes
the data sets used in the analysis, the DL model, and the two-
stage training strategy. Section 3 shows the results from the
evaluation of the model performance after the two training
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stages and the analyses of the Chinese NOx emissions for
2019 and 2020. Conclusions are presented in Sect. 4.

2 Data and methods

2.1 TCR-2 data products

The TCR-2 chemical data set (Miyazaki et al., 2020a) was
generated using a local ensemble transform Kalman fil-
ter (LETKF) data-assimilation system (Hunt et al., 2007),
which optimizes both emissions and atmospheric abun-
dance of various chemical species from the assimilation of
multi-constituent measurements from multiple satellite in-
struments. The observational data are assimilated into the
MIROC-CHASER global CTM (Sudo et al., 2002; Sekiya
et al., 2018). The TCR-2 data product has a horizontal reso-
lution of 1.1◦× 1.1◦, and consists of 27 pressure levels from
1000 to 60 hPa. Details about the TCR-2 data-assimilation
system can be found in Miyazaki et al. (2020a).

The TCR-2 NOx emissions were constrained in part by
tropospheric NO2 column retrievals from the QA4ECV ver-
sion 1.1 level 2 product for Ozone Monitoring Instrument
(OMI) NO2 measurements (Boersma et al., 2018). The OMI
is a spectrometer on board the NASA Aura spacecraft that
was launched on 15 July 2004. It measures NO2 in the UV-
VIS range of the spectrum, from which vertical column den-
sities (VCD) of NO2 are retrieved. The OMI measurement
strategy provides global coverage once per day. It should be
noted that as a chemical data-assimilation system with de-
tailed tropospheric chemistry, TCR-2 also relies on observa-
tional constraints from other NO2-related chemical species
(e.g. tropospheric ozone) to optimize tropospheric NO2 and
NOx emissions. For the analysis conducted here, the TCR-2
surface NO2 concentrations and NOx emissions were aver-
aged to daily fields to train the DL model. In addition to the
standard TCR-2 product, we also used an updated version
of the TCR-2 products that assimilated tropospheric NO2
column retrievals from the TM5-MP-DOMINO data prod-
uct version 1.2 for TROPOMI (van Geffen et al., 2020) at a
higher spatial resolution of 0.5625◦ (referred to as the T213
product Miyazaki et al., 2020b, 2021). TROPOMI serves as
the continuation and the next generation of the OMI sensor,
monitoring air pollutants at a much higher horizontal res-
olution (7 km× 3.5 km at nadir), and data have been avail-
able since February 2018. Since the TROPOMI-based TCR-
2 T213 product is only available for the last few years of the
analysis period considered here, we use it as an independent
data set in the evaluation of the DL model for the year 2020.

2.2 MEE network

As part of the Chinese government’s Air Pollution Con-
trol Action Plan, the Ministry of Ecology and Environment
(MEE) of the People’s Republic of China (PRC) have been
deploying ground-based stations to monitor air pollution

since 2013. Surface NO2 concentration measurements are
archived at an hourly frequency, at more than 1500 ground-
based stations as of 2019. The NO2 concentrations are mea-
sured and reported in micrograms per cubic metre (µg m−3).
Special attention is given to the reference state for unit con-
version. Until 31 August 2018, the reference state for in situ
measurements was 273 K and 1013 hPa, after which it was
changed to 298 K and 1013 hPa. To simplify the integration
of the MEE data with the TCR-2 data, the in situ measure-
ments were aggregated to the 1.1◦× 1.1◦ grid of the TCR-
2 system using the nearest neighbour interpolation method.
The locations of the MEE sites as of 2019 are shown in
Fig. 1. The MEE network has good coverage over eastern
and central China. For western and northeastern China, the
spatial coverage is lower. Han et al. (2022) investigated the
impact of observational coverage by removing 10 % of the
grid-averaged observations from the training of a similar DL
model and found no noticeable performance degradation in
the evaluation of the DL model over these regions. However,
the low station densities in some grids could lead to represen-
tation errors in the aggregated observations. The MEE net-
work includes both urban and rural sites and we included data
from all sites to increase observational coverage and mitigate
representation errors. The MEE measurements are made us-
ing a chemiluminescence analyser with a molybdenum con-
verter that results in an overestimation of NO2 (Lamsal et al.,
2008). Following Lamsal et al. (2008), we used the GEOS-
Chem model to simulate NOx , HNO3, peroxyacetyl nitrate
(PAN), and alkyl nitrates (AN) to produce correction factors
(CFs) for the measurements using the following relationship:

CF=
[NO2]

[NO2] + 0.95[PAN] + 0.35[HNO3] +
∑
[AN]

, (1)

where
∑

AN is the sum of all ANs. We used version
12.0.2 of GEOS-Chem at a resolution of 2◦× 2.5◦ to esti-
mate monthly mean CFs for 2015. The simulation was con-
ducted with full chemistry and the MIX inventory (Li et al.,
2017). The annual total Chinese emissions in the simulation
was 19.0 Tg NO, which is consistent with TCR-2 estimates.
These 2015 CFs were regridded to the 1.1◦×1.1◦ resolution
of the DL model and applied to the MEE measurements for
2014–2020. The CFs were close to unity in high emission re-
gions, such as in eastern China, but could be as small as 0.4
in rural regions.

2.3 Baidu “Qianxi” mobile data

The Baidu “Qianxi” mobile data are generated from the
Baidu map service, which is widely used in China as an
equivalent to Google maps. It quantifies the intensity of hu-
man mobility as an immigration index (I-index), an emigra-
tion index (E-index), and an intra-city index (C-index). These
migration indices have been used by other studies and are
shown to have good correlation with human activities (Wei
and Wang, 2020; Kraemer et al., 2020; Zhang et al., 2021).
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Figure 1. Location of the MEE network stations as of 2019. Blue circles represent the MEE stations. The three metropolitan regions that we
focused on in the analysis are shaded in grey, red, and cyan, for Jing-Jin-Ji (JJJ), the Yangtze River Delta (YRD), and the Pearl River Delta
(PRD), respectively.

The C-index measures the movement of people out of their
homes in the city, reflecting intra-city movement, and is thus
a proxy of human activity. Zhang et al. (2021) found that the
C-index showed much higher correlation with variations in
surface NO2 concentration than the other two indices (the I-
index and the E-index). They found that about 40 % of the
variance of emission-based NO2 reductions in 29 megacities
(with populations over 8 million) in China could be explained
by the C-index. For some megacities in southern China, the
variance explained by the C-index was as large as 70 %. The
Zhang et al. (2021) results suggest that human mobility can
provide a proxy for NOx emissions. We therefore use the C-
index here as the independent data set to evaluate the DL
model.

2.4 Deep-learning (DL) model and input variables

The DL model used here is built using convolutional neural
networks (CNNs) (LeCun et al., 2015) and long short-term
memory (LSTM) units (Hochreiter and Schmidhuber, 1997).
Figure 2 shows a schematic diagram of the model. The hy-
brid architecture was previously used for predicting summer-
time surface ozone concentrations in the United States in He
et al. (2022). The DL model showed great predictive skill
in capturing the nonlinear relationship between the predic-
tors and the model output. This DL architecture is applied
here for estimating Chinese NOx emissions using surface
NO2 concentrations and meteorological variables as input
predictors. The input variables are forwarded to three sequen-
tial convolutional blocks. Each convolutional block consists
of two CNN layers and one max-pooling layer. Each CNN
layer uses filters that are 3× 3 in size to apply convolutional
operations with the data vectors and output so-called latent

vectors. The softplus function is applied to activate the out-
put from each CNN layer to increase the nonlinearity of the
DL architecture. The max-pooling layers further condense
the dimension of the latent vectors by taking the maximum
values within 2× 2 windows. The first three convolutional
blocks were used as an encoder for the extraction of spa-
tial features hidden in the input information. The output of
the last convolutional block was a highly compressed and
reshaped latent vector with a size of 30× 1024, which was
then forwarded to two LSTM cells, which are recurrent neu-
ral networks (RNNs), with 1024 units to learn the dynamics.
The LSTM cell is followed by three up-convolutional layers
and seven convolutional layers. The up-convolutional layers
use 2× 2 convolutional filters to up-sample the latent vec-
tors to high-resolution outputs. We applied residual learn-
ing connections (the arrows in Fig. 2), which stabilize the
performance of the U-net model (Li et al., 2018; He et al.,
2016). We used the Adam optimizer for boosted optimization
of the U-net model (Kingma and Ba, 2014). The DL model
was run on the NVIDIA T4 tensor core graphics process-
ing unit (GPU) on the Graham supercomputer of Compute
Canada. During the training process, the convolutional filters,
the weight matrices, and bias vectors in the LSTM were it-
eratively optimized using a back-propagation algorithm. The
initial learning rate was 1×10−5 for both training stages, and
the residual sum of squares was used as the loss function.
Other hyper-parameters for the training of the model include
the number of epochs, which was 250, and the batch size,
which was 30.

The meteorological variables were taken from the ERA5
data product, which is different from the ERA-Interim data
product used in the TCR-2 data-assimilation system. We
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chose the more recent ERA-5 product because of its higher
spatial and temporal resolution, which better represents
mesoscale to synoptic-scale transport processes (Hoffmann
et al., 2019). This could be advantageous for the Stage 2
training, where the MEE in situ observations are used to im-
prove the NO2–NOx relationship. Table 1 lists the chosen
input variables for the U-net model. We treated information
of surface NO2 from days t and t − 1 as different channels
in the input layer. Considering the short lifetime of surface
NOx , we did not include meteorological variables from day
t−1. We included surface NO2 from days t and t−1 for better
prediction of NOx emissions. All the input variables are re-
gridded to the 1.1◦×1.1◦ grid of TCR-2 using the first-order
conservative remapping algorithm. As mentioned above, the
output of the DL model, which is NOx emissions, is at the
same 1.1◦× 1.1◦ grid. To ensure stability of the training of
the DL model, all the input variables were scaled to make
sure the values are within a relatively similar range. Table 1
gives the details about the input variables selected for the
NOx emission inversions.

2.5 Two-stage training strategy

For the integration of the MEE in situ data with the TCR-2
data, we use a two-stage transfer learning strategy (Zhuang
et al., 2021), as depicted in Fig. 3. The first training stage
focuses on the TCR-2 NO2 concentration and NOx emission
relationship. In this training stage, we train the model us-
ing the TCR-2 data pairs of NO2 and NOx , together with
the ERA5 meteorological predictors. The purpose of this
training stage is to supervise the DL model with the prior
knowledge of the relationship between surface NO2 concen-
trations and NOx emissions from the TCR-2 system. The
goal here is to train the DL model to reproduce the TCR-2
NOx emissions, given the TCR-2 surface NO2 data. The sec-
ond training stage is conducted based on the pre-trained DL
model from Stage 1. This stage utilizes the transferred TCR-2
knowledge and the pre-trained DL model weights to provide
an initial model state for Stage 2. In this second stage, the
MEE NO2 data are integrated with the TCR-2 surface NO2
data and the model retrained with the combined data set. The
purpose of Stage 2 is to improve the relationship between sur-
face NO2 and NOx emissions acquired from TCR-2, given
the available surface NO2 observations. Figure 4 shows the
annual mean NO2 concentrations from TCR-2 and MEE for
2019 and the mean TCR-2 NOx emissions for 2019. The dis-
tributions of surface NO2 and NOx are spatially consistent.
Compared to surface NO2 used in Stage 1 training, the MEE
in situ measurements add more information to the Stage 2
training. The TCR-2 standard data product spans from 2005
to 2020, whereas the MEE measurements are available from
the beginning of 2014. Therefore, we train the DL model
from 2005 to 2018 for Stage 1, and from 2014 to 2018 for
Stage 2. The evaluation of the DL model is conducted for
2019 and 2020. Due to the impact of the COVID-19 pan-

demic, year 2020 is anomalous as compared to the training
set with normal years. The mean TCR-2 Chinese NOx emis-
sions for the first 115 d in 2020 are 10 % and 23 % lower
than the same period in 2005 and 2014, respectively, and the
change in emissions was faster than at any point in the train-
ing set. Thus, by including 2020 in the testing period, we ex-
amined the capability of the U-net model to extrapolate the
training sample.

3 Results and discussion

3.1 Analysis of the DL emission in 2019, during the
testing period

A comparison of the Stage-1 DL analysis and the TCR-
2 NOx emissions for 2019 is shown in Fig. 5. The DL-
estimated daily NOx emissions are in good agreement with
the TCR-2 “truth” after the first training stage, with a correla-
tion coefficient of 0.96 and a slope of 1.02. The annual mean
errors in the DL-estimated NOx emissions are within 10 %.
These results indicate that the DL model captured well the
relationship between surface NO2 and NOx emissions from
TCR-2 after the first training stage. The time series of es-
timated NOx emissions for three metropolitan regions, five
selected provinces, and four major cities in China are plot-
ted in Fig. 6. As can be seen after Stage 1, the DL model
agrees well with the TCR-2 emissions in most regions. Even
on small scales such as Beijing, which is only one grid box at
the 1.1◦ resolution, the inferred emissions after Stage 1 are
consistent with the TCR-2 emissions. The largest discrep-
ancies after Stage 1 are found in the coastal regions of the
Pearl River Delta (PRD) and the Yangtze River Delta (YRD),
which encompass the cities of Guangzhou and Shanghai, re-
spectively, (see Fig. 1 for the locations of the PRD and YRD
regions).

The difficulty of the DL model in reproducing the TCR-
2 emissions in the coastal regions, particularly in the PRD,
could reflect issues in both TCR-2 and the DL model. In the
coastal regions in southern China, cloud cover will result in
significantly reduced observational coverage from the satel-
lites, which would impact TCR-2. For example, in the PRD
(and Guangzhou), TCR-2 exhibits periods, such as around
days 50 and 100, with anomalously low and constant NOx

emissions, which could be due to reduced observational cov-
erage. In addition, although both the PRD and the YRD
experience heavy rainfall during the monsoon season, Luo
et al. (2013) found that the PRD experience more frequent
mesoscale convective systems and greater rainfall accumu-
lation than the YRD, which they attributed to the mountain-
ous topography of the PRD and the nearby ocean, in contrast
to the more flat YRD. It is possible that at a resolution of
1.1◦× 1.1◦, both TCR-2 and the DL model cannot capture
the complex meteorology (e.g. the sea breeze circulation and
its model errors) in the PRD and its impact on the trace gas
distribution, and thus are unable to reproduce the appropriate
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Figure 2. Schematic representation of the U-net model for the prediction of Chinese NOx emissions. The CNN layers with 3× 3 filters are
shown in orange. The dark orange regions indicate the application of softplus activation functions. The 2× 2 max-pooling layers are shown
in red. The two green circles represent the LSTM cells. The 2× 2 up-convolutional layers are shown in light blue, which are concatenated
(indicated as grey boxes) with the transferred latent vectors (shown as dark blue boxes) from the encoder. The arrows indicate the residual
connections.

Table 1. Input variables for NOx emission inversion using the DL model.

Model input variables Unit1 Data source

Surface NO2 concentrations from days t and t − 1 ppb TCR-2/MEE2

Zonal component of 10 m wind (U10M) m s−1 ERA5
Meridional component of 10 m wind (V10M) m s−1 ERA5
2 m temperature (T2M) K ERA5
Skin temperature (SKT) K ERA5
Surface pressure (SP) khPa ERA5
Short-wave radiation downwards (SRD) kW m−2 ERA5
Boundary layer height (BLH) km ERA5

1 Units of the raw data could be different from these units. Multiplicative scaling is done to match these
units before being used by the U-net model. 2 TCR-2 surface NO2 concentrations are used for the first
training stage. The MEE in situ NO2 measurements are added in the second training stage.

relationship between the NOx emissions and the atmospheric
NO2 concentrations.

After Stage 2, the NOx emissions calculated by the DL
model are still consistent with the TCR-2 emissions in the
main source emission regions. For Jing-Jin-Ji (JJJ), the DL
emissions are 13.8 % higher than the TCR-2 emissions, while
for the YRD, the DL emissions are 10.0 % higher. The
seasonal differences in the estimated emissions are given
in Table 2. In JJJ, the differences between the DL and
TCR-2 emissions are relatively constant throughout the year,
whereas for the YRD the differences are small in autumn
and larger in winter. In general, we find that the DL model
suggests modest increases in emissions in central and east-
ern China, with relatively larger increases in the less-densely
populated provinces, such as Sichuan. In Sichuan, the esti-
mated DL emissions are 23.2 % higher than those in TCR-2
in summer. Comparison of the emissions after Stages 1 and
2 in Fig. 6 shows that these large increases were produced
after incorporating the MEE data in Stage 2. Thus, it is help-
ful to compare the time series of the TCR-2 and MEE sur-
face NO2 data, which are plotted in Fig. 7. In Sichuan, the
MEE observations suggest significantly higher surface NO2
abundances, which could account for the higher DL emission

estimates. For JJJ and the YRD, the TCR-2 NO2 is in good
agreement with the MEE data.

To further evaluate the estimated NOx emissions, in Fig. 8
we compare the 2019 TRC-2 and DL emissions with the
recently updated Multi-resolution Emission Inventory for
China (MEIC) (Zheng et al., 2021). For total Chinese emis-
sions, there is good consistency between the three invento-
ries, with TCR-2, the DL model, and MEIC suggesting total
Chinese emissions of 18.5± 3.9, 19.4, and 20.9 Tg NO, re-
spectively. However, despite the good agreement on the na-
tional scale, there are regional differences between the in-
ventories. Compared to TCR-2, MEIC suggested higher NOx

emissions in JJJ and in the Jiangsu province (the northeast-
ern part of the YRD). The DL-estimated emissions are higher
than TCR-2 in these regions, but lower than those of MEIC.
In Inner Mongolia, both TCR-2 and the DL model infer
higher emissions than MEIC, with the DL model suggest-
ing more emissions than MEIC and less than TCR-2. For the
PRD, TCR-2 NOx emissions are slightly lower than MEIC,
whereas the DL results are slightly higher than MEIC. In
less-densely populated regions, such as Sichuan and Yunnan
provinces, the DL-estimated NOx emissions are higher than
both TCR-2 and MEIC.
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Figure 3. The two-stage training strategy used to integrate the in situ data with the TCR-2 data. In Stage 1, only the ERA5 meteorological
fields and the TCR-2 surface NO2 data (represented by the orange boxes) are used as predictors in training the model (indicated by the
yellow symbols) to predict NOx emissions (indicated by the green box). In Stage 2, the two surface NO2 predictors (for days t and t − 1)
are replaced by the MEE in situ NO2 measurements (denoted by the red box) with data gaps filled with the TCR-2 NO2. Meteorological
variables remain the same in both training stages.

Figure 4. Annual mean (a) TCR-2 surface NO2, (b) MEE surface NO2 with data gaps filled by TCR-2, and (c) TCR-2 NOx emissions for
2019. East China is mostly covered by MEE, but West China has fewer stations and is mostly filled with TCR-2 data in (b).
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Figure 5. Correlation between daily NOx emissions from the TCR-
2 estimates and the DL analysis for 2019 (the testing period).

Table 2. Mean percentage difference between the estimated sea-
sonal NOx emissions from the DL model (after Stage 2) and TCR-2
for 2019. Positive values represent that DL emissions are higher.

Region/city DJF MAM JJA SON

China 5.6 7.6 7.2 2.4
Jing-Jin-Ji 16.9 12.9 11.2 14.3
Yangtze River Delta 15.3 9.8 11.4 3.9
Pearl River Delta 12.3 34.3 21.5 0.5
Henan 8.5 4.9 14.4 −1.8
Shaanxi 3.2 2.4 14.2 2.7
Sichuan −10.1 0.5 23.2 3.7
Hubei 12.7 7.6 25.6 7.3
Anhui 18.6 18.1 23.4 9.4
Beijing 9.1 19.1 54.8 11.1
Shanghai 5.0 2.3 20.0 8.8
Guangzhou 15.3 6.8 34.2 6.7
Hefei 36.3 16.4 33.3 19.0

3.2 Recovery of NOx emissions after the Chinese New
Year (CNY) holiday in 2019

Chinese NOx emissions typically decrease around January
and February every year due to reduced human activity dur-
ing the Chinese New Year (CNY) holidays. After the 1-week
holiday, Chinese NOx emissions gradually recover to pre-
holiday levels. This annual variation in NOx emissions is
well captured by TCR-2, as shown in Fig. 9. Starting from
10 d before the holidays, the Chinese NOx emissions de-
crease rapidly by 20 % relative to emissions 20 d before the
CNY, reaching a minimum shortly after the CNY. The inter-
annual spread in TCR-2 emissions was about ±5 % for the
2005–2019 period, as similarly demonstrated by Miyazaki
et al. (2020b), and the 2019 NOx emissions were consis-

tent with the multi-annual mean. The CNY-related variation
in NOx emissions was captured in TCR-2 in all three of
the mega-regions: Jing-Jin-Ji (JJJ), the Yangtze River Delta
(YDR), and the Pearl River Delta (PRD).

The DL analysis from Stage 2 was in good agreement
with the TCR-2 emission estimates before the 2019 CNY
for China and for the JJJ and YRD regions. However, after
the holiday, the DL-based NOx emissions recovered 50 % of
the post-holiday reductions within 10–20 d, which was faster
than in TCR-2 NOx . The faster recovery in the DL-based
NOx emissions can be clearly seen for China and the YRD.
The largest discrepancy between the DL model and TCR-2
was for the PRD region, where the variations in the DL-based
NOx emissions did not match that in TCR-2 before nor after
the CNY. For example, TCR-2 exhibited large variations in
the emissions, which the DL model does not capture. As dis-
cussed above, the DL model has difficulty reproducing the
TCR-2 emissions in the PRD throughout 2019, even after
Stage 1 of the training, when the model is trained solely on
TCR-2 data, so the discrepancy between TCR-2 and the DL
model in the signal of the CNY in the PRD emissions is con-
sistent with the results shown in Fig. 6.

To validate the faster post-holiday recovery in the DL-
based NOx emissions, we use the C-index from the Baidu
“Qianxi” data, which is also shown in Fig. 9. During the
2019 CNY period, the average C-index over the whole coun-
try rapidly decreased by 10 % from 4.5 to 4.1. It should be
noted that the relationship between the C-index and NOx

emissions is not linear, as a 20 % decrease in NOx emissions
does not necessarily correspond to a comparable decrease in
the C-index. However, as a measure of human activity and a
proxy for NOx emissions, the timing of the recovery in the
C-index could provide useful information to evaluate the per-
formance of the models in capturing the relative variations in
NOx emissions, especially from transportation source sec-
tors. As shown in Fig. 9, the faster recovery of the DL model
is consistent with the C-index. This is particularly evident for
China, JJJ, and the YRD. Figure 10 shows the estimated time
(in days) for the DL model, the TCR-2 NOx emissions, and
the C-index to recover to 50 % of the averaged values 5 d be-
fore the CNY for China, the three Chinese mega-regions, and
all Chinese provinces. For all provinces, the recovery of the
C-index took 9.5±5.2 d after the CNY (Fig. 10b). In compar-
ison, the recovery of the NOx emissions in the DL model and
TCR-2 took 14.4±8.4 and 23.0±11.1 d, respectively. For JJJ
and the YRD, the DL model suggested a recovery time of 15
and 16 d, respectively, whereas the C-index recovery took 9 d
(Fig. 10a). For the PRD, the DL model recovered after 15 d,
whereas the C-index recovered after 18 d.

The validation of the DL estimates here provide insights
about the limitations of the satellite-derived NOx emissions.
Insufficient space-based observational constraints can limit
the representation of short-term changes in NOx emissions.
The OMI observational coverage is limited, especially dur-
ing winter over China due to cloudy or rainy conditions,
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Figure 6. Time series of daily mean NOx emissions in 2019 for three Chinese metropolitan regions (Jing-Jin-Ji, the Yangtze River Delta,
and the Pearl River Delta), five selected provinces (Henan, Shaanxi, Sichuan, Hubei, and Anhui), and four major cities (Beijing, Shanghai,
Guangzhou, and Hefei) for 2019 (the testing period). Shown are the emissions from the TCR-2 estimates (black) and the DL analysis after
Stage 1 (blue) and Stage 2 (red). The shaded areas represent the 14 d period after the Chinese New Year.

and the relatively large retrieval uncertainty could prevent
rapid a posteriori emission changes in the top-down analysis.
This limitation could be mitigated by further optimization
of the background error covariances in the top-down analy-
sis to better reflect individual measurements. In addition, the
use of more dense and accurate observations, such as from
TROPOMI (see Sect. 3.3) could provide an improved repre-
sentation of daily emission changes.

3.3 Analysis of the 2020 COVID-19 pandemic period

Since the COVID-19 pandemic lockdown led to a significant
and unexpected perturbation to human activity, we examine
the ability of the DL model to quantify changes in NOx emis-
sions during the lockdown period in China in 2020. Here
we use the TROPOMI-based higher-resolution analysis us-

ing TCR-2 (hereafter referred to as T213 data) as an inde-
pendent data set for the evaluation of the DL model. The
standard OMI-based TCR-2 data product is hereafter referred
to as T106 data. The T213 data were used to study detailed
spatial and temporal changes in NOx emissions during the
COVID-19 lockdown period (Miyazaki et al., 2020b, 2021).
The T213 product is expected to better capture variability
in NOx emissions, compared to the T106 product, because
of the greater observational constraints from TROPOMI and
the higher spatial resolution and coverage. The time series
of the relative changes in NOx emissions around the 2020
CNY are shown in Fig. 11. We choose the reference date to
be 10 d before the 2020 CNY to avoid spin-up issues in the
T213 data. On the national scale, all three NOx emission esti-
mates decreased at roughly the same rate until about 10 d af-
ter the 2020 CNY, after which the DL-based emission began
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Figure 7. Time series of daily mean surface NO2 concentrations in 2019 for the three Chinese metropolitan regions, selected provinces, and
major cities shown in Fig. 6. The corresponding TCR-2 NO2 data sampled at MEE sites are shown in blue, whereas the MEE ground-based
NO2 observations are indicated by the dashed red line. The shaded areas represent the 14 d period after the Chinese New Year.

increasing. The T106 and T213 NOx emissions continued to
decrease for about an additional 10 d after the CNY, with the
T213 data suggesting a smaller overall reduction than T106.
All three NOx emission estimates suggested that a full re-
covery took 60 d after the CNY. However, of the three, the
DL-based estimates suggested the smallest overall reduction
in Chinese NOx emissions. For JJJ, the DL-based and T106
emissions estimates were fairly consistent, but the T213 esti-
mates suggested a faster recovery.

Comparison of the NOx emission time series with the C-
index in Fig. 11 shows distinct differences in the timing of
the minimum in the data after the 2020 CNY. As noted above,
we do not expect there to be a linear relationship between the
C-index and the NOx emissions, but since the reduction in
emissions is in part driven by the lockdown, we anticipate
that the minimum in the migration data should closely corre-
spond to the minimum in emissions. For China, as listed in
Table 3, the C-index reached a minimum 14 d after the CNY,
whereas the DL model, the T213 data, and the T106 data

reached a minimum within 13, 21, and 23 d, respectively. The
DL model reproduced well the timing of the minimum for
JJJ and the YRD. However, it significantly underestimated
the timing for the PRD (3 d for the DL model compared to
12 d for the C-index). But as we noted above, the DL model
has difficulty simulating the PRD, and the timing of the min-
imum for the PRD is not well defined, as the signal is noisy
and exhibits a fairly broad minimum. We find that the timing
of the minima in the T213 emissions more closely match that
of the C-index than T106, which suggested delayed minima.

The timing of the recovery of the post-holiday reductions
to 50 % of the averaged values 5 d before the holiday for the
C-index and the estimated NOx emissions are listed in Ta-
ble 4. For China, the C-index took 31 d to recover in 2020,
whereas the DL model and the T213 data took 31 and 37 d,
respectively, to recover. The recovery time in T106 data was
41 d. For JJJ, the time required for the 50 % recovery was
34 d for the C-index, whereas for the DL model, the T213
data, and the T106 data it was 34, 36, and 31 d, respectively.
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Figure 8. Annual NOx emissions (Tg NO) for 2019 estimated by (a) the TCR-2 T106 data product, (b) the DL analysis and (c) the MEIC
inventory. The DL minus TCR-2 emission differences are shown in (d).

Figure 9. Time series of the percentage change in Chinese NOx emissions and the C-index Baidu mobile data as a function of days from the
CNY. The differences are plotted relative to 20 d before the 2019 CNY. Shown are time-series comparisons for (a) China, (b) the Jing-Jin-Ji
region, (c) the Yangtze River Delta region, and (d) the Pearl River Delta region. The black line represents the TCR-2 mean for 2005–2019.
The C-index is smoothed by a 7 d window to remove weekly variability.
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Figure 10. Comparison of the timing of the recovery of the NOx emissions and Baidu C-index data back to 50 % of the averaged values
5 d before the CNY in 2019. (a) The scatter plot of NOx emission recovery dates versus the C-index recovery dates. Each circle represents
a province and special markers correspond to the larger regions as indicated by the legend. (b) Box whisker plots and the normalized
distribution of the recovery dates for the C-index, TCR-2 NOx emissions, and the DL-based NOx emissions, calculated based on all provinces
in China.

For the YRD, both reanalysis data products took over 40 d to
recover, which is more than 20 d longer than the C-index and
more than 10 d longer than the DL model. In the PRD, all of
the estimated NOx emissions took more than 20 d longer to
recover than the C-index.

The spatial distribution of the DL-estimated changes in
Chinese NOx emissions 20–30 d after the 2020 CNY, relative
to 10–20 d prior to the CNY, are shown in Fig. 12. The DL
analysis shows over 30 % reduction in NOx emissions 20–
30 d after the 2020 CNY for the heavily polluted regions in
northern and eastern China. In JJJ, the DL analysis suggested
a maximum reduction in NOx emissions of 42 % during the
lockdown period, whereas the T106 and T213 data indicated
a maximum reduction of 49 % and 41 %, respectively. Using
a regional model to assimilate the MEE data to estimate NOx

emissions for January–March 2020, Feng et al. (2020) esti-
mated a reduction of 42 % in NOx emissions for JJJ. For the
YRD, the DL model and the T106 data suggested compara-
ble reductions of 30 % and 31 %, respectively, which were
roughly 10 % smaller than the reductions in the T213 data
and in Feng et al. (2020) of 40 % and 41 %, respectively. The
comparison here shows that the impact of the lockdown on
NOx emissions in the higher-resolution T213 data, in con-
trast to the T106 data, is more consistent with Feng et al.
(2020). This confirms that the emission analysis at T106 res-
olution (1.1◦) constrained by the OMI measurements may
not provide sufficient information to capture rapid regional
variations in NOx emissions. The four analyses exhibited the
largest disagreement in the PRD, where Feng et al. (2020)
estimated a 50 % maximum reduction in emissions, whereas
the T106 and T213 data suggested maximum reductions of
39 % and 35 %, respectively. The DL model significantly un-
derestimated the emission reduction in the region, with a

Table 3. Timing (in days) of the minimum in the migration data and
NOx emissions during 30 d after the 2020 CNY.

Regions C-index DL model T213 T106

China 14 13 21 23
Jing-Jin-Ji 12 13 20 28
Yangtze River Delta 12 13 17 27
Pearl River Delta 12 3 13 20

Table 4. Time (in days) for the migration data and NOx emissions
to recover to 50 % of the pre-CNY level in 2020.

Regions C-index DL model T213 T106

China 34 32 38 41
Jing-Jin-Ji 37 33 37 31
Yangtze River Delta 25 32 47 46
Pearl River Delta 27 24 65 52

maximum reduction of 24 %. Overall, the comparison with
the migration data and with the Feng et al. (2020) results in-
dicate that, with the exception of the PRD, integrating the
MEE and TCR-2 data results in an improved relationship be-
tween surface NO2 concentrations and NOx emissions.

4 Conclusions

We developed a DL model to estimate Chinese NOx emis-
sions using surface NO2 concentration and meteorological
predictors, based on the integration of MEE in situ NO2 ob-
servations with TCR-2 NO2. To that end, we applied a mul-
tistage training strategy for the transfer learning of the chem-
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Figure 11. Time series of percentage changes in NOx emissions and the C-index Baidu mobility data, relative to 10 d before the 2020 CNY,
as a function of days from the CNY. Shown are the time series for (a) China, (b) the Jing-Jin-Ji region, (c) the Yangtze River Delta, and (d)
the Pearl River Delta.

Figure 12. DL-estimated percent changes in Chinese NOx emis-
sions averaged 20–30 d after the 2020 CNY compared to 20–10 d
before the 2020 CNY. Results for grid boxes with NOx emissions
less than 1× 10−11 kgN m−2 s−1 are not shown.

ical relationship between surface NO2 and NOx emissions
in the TCR-2 data set. We found that the integration of the
MEE in situ data with TCR-2 suggested NOx emissions from
China for 2019 to be 19.4 Tg NO, which is consistent with
the 18.5± 3.9 Tg NO estimated by TCR-2. The DL model
and TCR-2 were both consistent with the suggested Chinese
source of 20.9 Tg NO in the MEIC inventory (Zheng et al.,
2021). For the JJJ and YRD mega-regions in China, the DL-
based NOx emissions were higher than TCR-2 by 13.8 % and

10.0 %, respectively. The DL model particularly increased
emissions in the less-densely populated provinces, where the
MEE observations indicated higher surface NO2 abundances
than in TCR-2. He et al. (2022) suggested that inversions
using satellite observations to estimate NOx emissions have
the potential to blend information from background NOx and
surface emissions at coarse spatial resolutions. It is possible
that much higher resolution than the 1.1◦× 1.1◦ of TCR-2
is needed for the satellite-based assimilation system to cap-
ture the surface NO2 signal in these less-densely populated
provinces. We also found that the DL model could not re-
produce the TCR-2 relationship between NOx emissions and
surface NO2 in the PRD, and integration of the MEE data
resulted in large adjustments in the NOx emissions in the
region. During the monsoon season, southern China expe-
riences heavy and frequent rainfall, and the mountainous to-
pography of the PRD and its proximity of the ocean could
make it challenging for TCR-2 and the DL model to accu-
rately account for the influence on surface NO2 of the com-
plex meteorology in the region at a resolution of 1.1◦×1.1◦.

Analysis of the DL-based NOx emissions focused around
the CNY holiday in 2019 showed a faster recovery of the
Chinese NOx emissions after the 2019 CNY, which was con-
sistent with the Baidu “Qianxi” mobile data (Kraemer et al.,
2020; Zhang et al., 2021). During the 2020 lockdown period
for the COVID-19 pandemic, the DL model estimated max-
imum reductions in NOx emissions – 42 % for JJJ and 30 %
for the YRD. These estimates were consistent with the TCR-
2 T106 data (with reductions of 49 % for JJJ and 31 % for
the YRD), the high-resolution TCR-2 T213 data (with reduc-
tions of 41 % for JJJ and 40 % for the YRD), and with Feng
et al. (2020) (who estimated reductions of 42 % for JJJ and
41 % for the YRD). For the PRD, the DL model estimated a
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significantly smaller maximum reduction in NOx emissions
of 24 %, which is likely due to the model bias in the region.

The analysis during the 2020 lockdown period showed
that the DL model has the ability to extrapolate outside the
regime of the training data set. Our results showed the po-
tential of this DL model as a good complementary tool for
conventional data-assimilation approaches. The flexibility of
the model is such that it could be adapted to provide near-real
time estimates of NOx emissions for air quality forecasts and
chemical reanalysis systems. The high computational effi-
ciency of the DL model in integrating large amounts of obser-
vational data from multiple sources would be advantageous
in the emerging era with geostationary satellites that will sig-
nificantly enhance observational coverage for air quality ap-
plications.

Code and data availability. The code for this study can be found
at https://github.com/tailonghe/Unet_Chinese_NOx (last access: 25
October 2022) (DOI: https://doi.org/10.5281/zenodo.7145714, He,
2022). The TCR-2 data could be accessed from https://doi.org/10.
25966/9qgv-fe81 (Miyazaki et al., 2019). The ERA5 climate re-
analysis data are available from ECMWF https://doi.org/10.24381/
cds.adbb2d47 (Hersbach et al., 2018). The MEE in situ observations
could be downloaded from https://doi.org/10.5281/zenodo.5030857
(Jiang, 2021). The Baidu “Qianxi” mobile data were originally re-
trieved from the Baidu “Qianxi” website (http://qianxi.baidu.com/,
last access: December 2021) and processed in Zhang et al. (2021).

Author contributions. TLH and DBAJ designed the research
study; TLH built and trained the model; TLH and DBAJ performed
the research and analysed the results; TLH, DBAJ, KM, KWB, ZJ,
XC, and YZ contributed to revising and editing the manuscript;
TLH, KM, XC, RL, YZ, and KL processed the data sets.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Computations were performed on the Gra-
ham supercomputer of Compute Ontario and Compute Canada.

Financial support. This work was supported by the Natural Sci-
ences and Engineering Research Council of Canada (grant no.
RGPIN-2019-06804). Part of this work was conducted at the Jet
Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration
(NASA, grant no. TROPESS, grant no. 19-AURAST19-0044).

Review statement. This paper was edited by Jerome Brioude and
reviewed by two anonymous referees.

References

Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., van
Gent, J., Eskes, H., Levelt, P. F., van der A, R., Veefkind, J. P.,
Vlietinck, J., Yu, H., and Zehner, C.: Impact of Coronavirus
Outbreak on NO2 Pollution Assessed Using TROPOMI and
OMI Observations, Geophys. Res. Lett., 47, e2020GL087978,
https://doi.org/10.1029/2020GL087978, 2020.

Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and
Wagner, T.: Megacity Emissions and Lifetimes of Nitro-
gen Oxides Probed from Space, Science, 333, 1737–1739,
https://doi.org/10.1126/science.1207824, 2011.

Bertram, T. H., Heckel, A., Richter, A., Burrows, J. P., and
Cohen, R. C.: Satellite measurements of daily variations
in soil NOx emissions, Geophys. Res. Lett., 32, L24812,
https://doi.org/10.1029/2005GL024640, 2005.

Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R. W., Wang, J.,
and van der A, R. J.: Intercomparison of SCIAMACHY and OMI
tropospheric NO2 columns: Observing the diurnal evolution of
chemistry and emissions from space, J. Geophys. Res.-Atmos.,
113, D16S26, https://doi.org/10.1029/2007JD008816, 2008.

Boersma, K. F., Vinken, G. C. M., and Eskes, H. J.:
Representativeness errors in comparing chemistry transport
and chemistry climate models with satellite UV–Vis tropo-
spheric column retrievals, Geosci. Model Dev., 9, 875–898,
https://doi.org/10.5194/gmd-9-875-2016, 2016.

Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente,
A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E.,
Van Roozendael, M., Wagner, T., Maasakkers, J. D., van der
A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi,
G., Lambert, J.-C., and Compernolle, S. C.: Improving algo-
rithms and uncertainty estimates for satellite NO2 retrievals: re-
sults from the quality assurance for the essential climate vari-
ables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651–6678,
https://doi.org/10.5194/amt-11-6651-2018, 2018.

Chai, T., Carmichael, G. R., Tang, Y., Sandu, A., Heckel,
A., Richter, A., and Burrows, J. P.: Regional NOx emis-
sion inversion through a four-dimensional variational
approach using SCIAMACHY tropospheric NO2 col-
umn observations, Atmos. Environ., 43, 5046–5055,
https://doi.org/10.1016/j.atmosenv.2009.06.052, 2009.

Choi, Y., Wang, Y., Zeng, T., Martin, R. V., Kurosu, T. P.,
and Chance, K.: Evidence of lightning NOx and con-
vective transport of pollutants in satellite observations
over North America, Geophys. Res. Lett., 32, L02805,
https://doi.org/10.1029/2004GL021436, 2005.

de Foy, B., Wilkins, J. L., Lu, Z., Streets, D. G., and Duncan, B. N.:
Model evaluation of methods for estimating surface emissions
and chemical lifetimes from satellite data, Atmos. Environ., 98,
66–77, https://doi.org/10.1016/j.atmosenv.2014.08.051, 2014.

Feng, S., Jiang, F., Wang, H., Wang, H., Ju, W., Shen, Y.,
Zheng, Y., Wu, Z., and Ding, A.: NOx Emission Changes Over
China During the COVID-19 Epidemic Inferred From Surface
NO2 Observations, Geophys. Res. Lett., 47, e2020GL090080,
https://doi.org/10.1029/2020GL090080, 2020.

Atmos. Chem. Phys., 22, 14059–14074, 2022 https://doi.org/10.5194/acp-22-14059-2022

https://github.com/tailonghe/Unet_Chinese_NOx
https://doi.org/10.5281/zenodo.7145714
https://doi.org/10.25966/9qgv-fe81
https://doi.org/10.25966/9qgv-fe81
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.5281/zenodo.5030857
http://qianxi.baidu.com/
https://doi.org/10.1029/2020GL087978
https://doi.org/10.1126/science.1207824
https://doi.org/10.1029/2005GL024640
https://doi.org/10.1029/2007JD008816
https://doi.org/10.5194/gmd-9-875-2016
https://doi.org/10.5194/amt-11-6651-2018
https://doi.org/10.1016/j.atmosenv.2009.06.052
https://doi.org/10.1029/2004GL021436
https://doi.org/10.1016/j.atmosenv.2014.08.051
https://doi.org/10.1029/2020GL090080


T.-L. He et al.: Inverse modelling of Chinese NOx emissions using deep learning 14073

Han, W., He, T.-L., Tang, Z., Wang, M., Jones, D., and Jiang, Z.: A
comparative analysis for a deep learning model (hyDL-CO v1.0)
and Kalman filter to predict CO concentrations in China, Geosci.
Model Dev., 15, 4225–4237, https://doi.org/10.5194/gmd-15-
4225-2022, 2022.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for
Image Recognition, in: 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–
30 June 2016, 770–778, https://doi.org/10.1109/CVPR.2016.90,
2016.

He, T.-L.: Unet_Chinese_NOx, v1.0.1, Zenodo [code],
https://doi.org/10.5281/zenodo.7145714, 2022.

He, T.-L., Jones, D. B. A., Miyazaki, K., Huang, B., Liu, Y., Jiang,
Z., White, E. C., Worden, H. M., and Worden, J. R.: Deep
Learning to Evaluate US NOx Emissions Using Surface Ozone
Predictions, J. Geophys. Res.-Atmos., 127, e2021JD035597,
https://doi.org/10.1029/2021JD035597, 2022.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N.:
ERA5 hourly data on single levels from 1959 to present, Coper-
nicus Climate Change Service (C3S) Climate Data Store (CDS)
[data set], https://doi.org/10.24381/cds.adbb2d47, 2018.

Hochreiter, S. and Schmidhuber, J.: Long Short-
Term Memory, Neural Comput., 9, 1735–1780,
https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griess-
bach, S., Heng, Y., Konopka, P., Müller, R., Vogel, B., and
Wright, J. S.: From ERA-Interim to ERA5: the considerable
impact of ECMWF’s next-generation reanalysis on Lagrangian
transport simulations, Atmos. Chem. Phys., 19, 3097–3124,
https://doi.org/10.5194/acp-19-3097-2019, 2019.

Hunt, B., Kostelich, E., and Szunyogh, I.: Efficient data
assimilation for spatiotemporal chaos: A local ensem-
ble transform Kalman filter, Physica D, 230, 112–126,
https://doi.org/10.1016/j.physd.2006.11.008, 2007.

Jiang, Z.: Model settings and surface measure-
ments for air quality study, Zenodo [data set],
https://doi.org/10.5281/zenodo.5030857, 2021.

Keller, C. A. and Evans, M. J.: Application of random forest regres-
sion to the calculation of gas-phase chemistry within the GEOS-
Chem chemistry model v10, Geosci. Model Dev., 12, 1209–
1225, https://doi.org/10.5194/gmd-12-1209-2019, 2019.

Kim, S.-W., Heckel, A., McKeen, S. A., Frost, G. J., Hsie, E.-Y.,
Trainer, M. K., Richter, A., Burrows, J. P., Peckham, S. E., and
Grell, G. A.: Satellite-observed U.S. power plant NOx emission
reductions and their impact on air quality, Geophys. Res. Lett.,
33, L22812, https://doi.org/10.1029/2006GL027749, 2006.

Kingma, D. P. and Ba, J.: Adam: A Method for Stochas-
tic Optimization, in: 3rd International Conference on Learn-
ing Representations, ICLR, San Diego, CA, USA, 7–9 May
2015, edited by: Bengio, Y. and LeCun, Y., arXiv [preprint],
https://doi.org/10.48550/arXiv.1412.6980, 22 December 2014.

Konovalov, I. B., Beekmann, M., Richter, A., and Burrows, J. P.:
Inverse modelling of the spatial distribution of NOx emissions
on a continental scale using satellite data, Atmos. Chem. Phys.,
6, 1747–1770, https://doi.org/10.5194/acp-6-1747-2006, 2006.

Kraemer, M. U. G., Yang, C.-H., Gutierrez, B., Wu, C.-H., Klein,
B., Pigott, D. M., null null, du Plessis, L., Faria, N. R.,

Li, R., Hanage, W. P., Brownstein, J. S., Layan, M., Vespig-
nani, A., Tian, H., Dye, C., Pybus, O. G., and Scarpino,
S. V.: The effect of human mobility and control measures
on the COVID-19 epidemic in China, Science, 368, 493–497,
https://doi.org/10.1126/science.abb4218, 2020.

Kurokawa, J. i., Yumimoto, K., Uno, I., and Ohara, T.:
Adjoint inverse modeling of NOx emissions over east-
ern China using satellite observations of NO2 verti-
cal column densities, Atmos. Environ., 43, 1878–1887,
https://doi.org/10.1016/j.atmosenv.2008.12.030, 2009.

Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M.,
Celarier, E. A., Bucsela, E., Dunlea, E. J., and Pinto, J. P.:
Ground-level nitrogen dioxide concentrations inferred from the
satellite-borne Ozone Monitoring Instrument, J. Geophys. Res.-
Atmos., 113, D16308, https://doi.org/10.1029/2007JD009235,
2008.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521,
436–444, https://doi.org/10.1038/nature14539, 2015.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.: Visual-
izing the Loss Landscape of Neural Nets, in: Proceedings of the
32nd International Conference on Neural Information Processing
Systems, Montréal, Canada, Curran Associates Inc., 6391–6401,
2018.

Li, J. and Wang, Y.: Inferring the anthropogenic NOx emission
trend over the United States during 2003–2017 from satellite
observations: was there a flattening of the emission trend after
the Great Recession?, Atmos. Chem. Phys., 19, 15339–15352,
https://doi.org/10.5194/acp-19-15339-2019, 2019.

Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z.,
Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng,
Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H.,
and Zheng, B.: MIX: a mosaic Asian anthropogenic emission
inventory under the international collaboration framework of
the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963,
https://doi.org/10.5194/acp-17-935-2017, 2017.

Lin, J.-T. and McElroy, M. B.: Impacts of boundary layer mixing
on pollutant vertical profiles in the lower troposphere: Impli-
cations to satellite remote sensing, Atmos. Environ., 44, 1726–
1739, https://doi.org/10.1016/j.atmosenv.2010.02.009, 2010.

Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner,
T.: NOx lifetimes and emissions of cities and power plants
in polluted background estimated by satellite observations, At-
mos. Chem. Phys., 16, 5283–5298, https://doi.org/10.5194/acp-
16-5283-2016, 2016.

Liu, F., Page, A., Strode, S. A., Yoshida, Y., Choi, S., Zheng,
B., Lamsal, L. N., Li, C., Krotkov, N. A., Eskes, H., van der
A, R., Veefkind, P., Levelt, P. F., Hauser, O. P., and Joiner, J.:
Abrupt decline in tropospheric nitrogen dioxide over China af-
ter the outbreak of COVID-19, Science Advances, 6, eabc2992,
https://doi.org/10.1126/sciadv.abc2992, 2020.

Luo, Y., Wang, H., Zhang, R., Qian, W., and Luo, Z.: Com-
parison of Rainfall Characteristics and Convective Proper-
ties of Monsoon Precipitation Systems over South China and
the Yangtze and Huai River Basin, J. Climate, 26, 110–132,
https://doi.org/10.1175/JCLI-D-12-00100.1, 2013.

Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P.,
Palmer, P. I., and Evans, M. J.: Global inventory of ni-
trogen oxide emissions constrained by space-based observa-

https://doi.org/10.5194/acp-22-14059-2022 Atmos. Chem. Phys., 22, 14059–14074, 2022

https://doi.org/10.5194/gmd-15-4225-2022
https://doi.org/10.5194/gmd-15-4225-2022
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.5281/zenodo.7145714
https://doi.org/10.1029/2021JD035597
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.5194/acp-19-3097-2019
https://doi.org/10.1016/j.physd.2006.11.008
https://doi.org/10.5281/zenodo.5030857
https://doi.org/10.5194/gmd-12-1209-2019
https://doi.org/10.1029/2006GL027749
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.5194/acp-6-1747-2006
https://doi.org/10.1126/science.abb4218
https://doi.org/10.1016/j.atmosenv.2008.12.030
https://doi.org/10.1029/2007JD009235
https://doi.org/10.1038/nature14539
https://doi.org/10.5194/acp-19-15339-2019
https://doi.org/10.5194/acp-17-935-2017
https://doi.org/10.1016/j.atmosenv.2010.02.009
https://doi.org/10.5194/acp-16-5283-2016
https://doi.org/10.5194/acp-16-5283-2016
https://doi.org/10.1126/sciadv.abc2992
https://doi.org/10.1175/JCLI-D-12-00100.1


14074 T.-L. He et al.: Inverse modelling of Chinese NOx emissions using deep learning

tions of NO2 columns, J. Geophys. Res.-Atmos., 108, 4537,
https://doi.org/10.1029/2003JD003453, 2003.

Martin, R. V., Sioris, C. E., Chance, K., Ryerson, T. B.,
Bertram, T. H., Wooldridge, P. J., Cohen, R. C., Neuman,
J. A., Swanson, A., and Flocke, F. M.: Evaluation of space-
based constraints on global nitrogen oxide emissions with
regional aircraft measurements over and downwind of east-
ern North America, J. Geophys. Res.-Atmos., 111, D15308,
https://doi.org/10.1029/2005JD006680, 2006.

Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Wor-
den, H., Livesey, N., Payne, V. H., Sudo, K., Kanaya, Y., Taki-
gawa, M., and Ogochi, K.: Chemical Reanalysis Products, NASA
DOIMS [data set], https://doi.org/10.25966/9qgv-fe81, 2019.

Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Wor-
den, H., Livesey, N., Payne, V. H., Sudo, K., Kanaya, Y., Taki-
gawa, M., and Ogochi, K.: Updated tropospheric chemistry re-
analysis and emission estimates, TCR-2, for 2005–2018, Earth
Syst. Sci. Data, 12, 2223–2259, https://doi.org/10.5194/essd-12-
2223-2020, 2020a.

Miyazaki, K., Bowman, K., Sekiya, T., Jiang, Z., Chen, X., Es-
kes, H., Ru, M., Zhang, Y., and Shindell, D.: Air Quality Re-
sponse in China Linked to the 2019 Novel Coronavirus (COVID-
19) Lockdown, Geophys. Res. Lett., 47, e2020GL089252,
https://doi.org/10.1029/2020GL089252, 2020b.

Miyazaki, K., Bowman, K., Sekiya, T., Takigawa, M., Neu,
J. L., Sudo, K., Osterman, G., and Eskes, H.: Global tropo-
spheric ozone responses to reduced NOx emissions linked to
the COVID-19 worldwide lockdowns, Science Advances, 7,
eabf7460, https://doi.org/10.1126/sciadv.abf7460, 2021.

Müller, J.-F. and Stavrakou, T.: Inversion of CO and NOx emissions
using the adjoint of the IMAGES model, Atmos. Chem. Phys., 5,
1157–1186, https://doi.org/10.5194/acp-5-1157-2005, 2005.

Murray, L. T.: Lightning NOx and Impacts on Air Quality, Current
Pollution Reports, 2, 115–133, https://doi.org/10.1007/s40726-
016-0031-7, 2016.

Napelenok, S. L., Pinder, R. W., Gilliland, A. B., and Martin, R.
V.: A method for evaluating spatially-resolved NOx emissions
using Kalman filter inversion, direct sensitivities, and space-
based NO2 observations, Atmos. Chem. Phys., 8, 5603–5614,
https://doi.org/10.5194/acp-8-5603-2008, 2008.

Nault, B. A., Laughner, J. L., Wooldridge, P. J., Crounse, J. D.,
Dibb, J., Diskin, G., Peischl, J., Podolske, J. R., Pollack, I. B.,
Ryerson, T. B., Scheuer, E., Wennberg, P. O., and Cohen, R. C.:
Lightning NOx Emissions: Reconciling Measured and Modeled
Estimates With Updated NOx Chemistry, Geophys. Res. Lett.,
44, 9479–9488, https://doi.org/10.1002/2017GL074436, 2017.

Qu, Z., Henze, D. K., Theys, N., Wang, J., and Wang, W.: Hybrid
Mass Balance/4D-Var Joint Inversion of NOx and SO2 Emis-
sions in East Asia, J. Geophys. Res.-Atmos., 124, 8203–8224,
https://doi.org/10.1029/2018JD030240, 2019.

Qu, Z., Jacob, D. J., Silvern, R. F., Shah, V., Campbell, P. C., Valin,
L. C., and Murray, L. T.: US COVID-19 Shutdown Demon-
strates Importance of Background NO2 in Inferring NOx Emis-
sions From Satellite NO2 Observations, Geophys. Res. Lett.,
48, e2021GL092783, https://doi.org/10.1029/2021GL092783,
2021.

Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learn-
ing to represent subgrid processes in climate mod-
els, P. Natl. Acad. Sci. USA, 115, 9684–9689,
https://doi.org/10.1073/pnas.1810286115, 2018.

Sekiya, T., Miyazaki, K., Ogochi, K., Sudo, K., and Takigawa,
M.: Global high-resolution simulations of tropospheric nitrogen
dioxide using CHASER V4.0, Geosci. Model Dev., 11, 959–988,
https://doi.org/10.5194/gmd-11-959-2018, 2018.

Silvern, R. F., Jacob, D. J., Mickley, L. J., Sulprizio, M. P., Travis,
K. R., Marais, E. A., Cohen, R. C., Laughner, J. L., Choi,
S., Joiner, J., and Lamsal, L. N.: Using satellite observations
of tropospheric NO2 columns to infer long-term trends in US
NOx emissions: the importance of accounting for the free tropo-
spheric NO2 background, Atmos. Chem. Phys., 19, 8863–8878,
https://doi.org/10.5194/acp-19-8863-2019, 2019.

Sudo, K., Takahashi, M., Kurokawa, J.-I., and Akimoto, H.:
CHASER: A global chemical model of the troposphere
1. Model description, J. Geophys. Res.-Atmos., 107, 4339,
https://doi.org/10.1029/2001JD001113, 2002.

Toenges-Schuller, N., Stein, O., Rohrer, F., Wahner, A., Richter,
A., Burrows, J. P., Beirle, S., Wagner, T., Platt, U., and Elvidge,
C. D.: Global distribution pattern of anthropogenic nitrogen ox-
ide emissions: Correlation analysis of satellite measurements
and model calculations, J. Geophys. Res.-Atmos., 111, D05312,
https://doi.org/10.1029/2005JD006068, 2006.

van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Lin-
den, M., Zara, M., and Veefkind, J. P.: S5P TROPOMI NO2
slant column retrieval: method, stability, uncertainties and com-
parisons with OMI, Atmos. Meas. Tech., 13, 1315–1335,
https://doi.org/10.5194/amt-13-1315-2020, 2020.

Wei, S. and Wang, L.: Examining the population flow network
in China and its implications for epidemic control based on
Baidu migration data, Humanities and Social Sciences Commu-
nications, 7, 145, https://doi.org/10.1057/s41599-020-00633-5,
2020.

Wu, H., Tang, X., Wang, Z., Wu, L., Li, J., Wang, W., Yang, W., and
Zhu, J.: High-spatiotemporal-resolution inverse estimation of CO
and NOx emission reductions during emission control periods
with a modified ensemble Kalman filter, Atmos. Environ., 236,
117631, https://doi.org/10.1016/j.atmosenv.2020.117631, 2020.

Zhang, Y., Bo, H., Jiang, Z., Wang, Y., Fu, Y., Cao, B.,
Wang, X., Chen, J., and Li, R.: Untangling the contribu-
tions of meteorological conditions and human mobility to
tropospheric NO2 in Chinese mainland during the COVID-
19 pandemic in early 2020, Natl. Sci. Rev., 8, nwab061,
https://doi.org/10.1093/nsr/nwab061, 2021.

Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei,
Y., and He, K.: Changes in China’s anthropogenic emissions and
air quality during the COVID-19 pandemic in 2020, Earth Syst.
Sci. Data, 13, 2895–2907, https://doi.org/10.5194/essd-13-2895-
2021, 2021.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H.,
and He, Q.: A Comprehensive Survey on Transfer Learning, Pro-
ceedings of the IEEE, 109, 43–76, 2021.

Atmos. Chem. Phys., 22, 14059–14074, 2022 https://doi.org/10.5194/acp-22-14059-2022

https://doi.org/10.1029/2003JD003453
https://doi.org/10.1029/2005JD006680
https://doi.org/10.25966/9qgv-fe81
https://doi.org/10.5194/essd-12-2223-2020
https://doi.org/10.5194/essd-12-2223-2020
https://doi.org/10.1029/2020GL089252
https://doi.org/10.1126/sciadv.abf7460
https://doi.org/10.5194/acp-5-1157-2005
https://doi.org/10.1007/s40726-016-0031-7
https://doi.org/10.1007/s40726-016-0031-7
https://doi.org/10.5194/acp-8-5603-2008
https://doi.org/10.1002/2017GL074436
https://doi.org/10.1029/2018JD030240
https://doi.org/10.1029/2021GL092783
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.5194/gmd-11-959-2018
https://doi.org/10.5194/acp-19-8863-2019
https://doi.org/10.1029/2001JD001113
https://doi.org/10.1029/2005JD006068
https://doi.org/10.5194/amt-13-1315-2020
https://doi.org/10.1057/s41599-020-00633-5
https://doi.org/10.1016/j.atmosenv.2020.117631
https://doi.org/10.1093/nsr/nwab061
https://doi.org/10.5194/essd-13-2895-2021
https://doi.org/10.5194/essd-13-2895-2021

	Abstract
	Introduction
	Data and methods
	TCR-2 data products
	MEE network
	Baidu “Qianxi” mobile data
	Deep-learning (DL) model and input variables
	Two-stage training strategy

	Results and discussion
	Analysis of the DL emission in 2019, during the testing period
	Recovery of NOx emissions after the Chinese New Year (CNY) holiday in 2019
	Analysis of the 2020 COVID-19 pandemic period

	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

