Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13355-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13355-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Responses of CIPS/AIM noctilucent clouds to the interplanetary magnetic field
Liang Zhang
CORRESPONDING AUTHOR
State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
Brian Tinsley
Physics Department, University of Texas at Dallas, Richardson, Texas 75080, USA
Limin Zhou
Key Laboratory of Geographic Information Science, East China Normal University, Shanghai, 200062, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Beijing, 100029, China
Related authors
Liang Zhang, Zhongfang Liu, and Brian Tinsley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2330, https://doi.org/10.5194/egusphere-2025-2330, 2025
Short summary
Short summary
Polar mesospheric clouds (PMCs) reflect climate change and in turn influence mesospheric chemistry, but their ice formation remain unclear. We show that PMC height controls ice particle properties and propose a new formation mechanism involving charged meteoric smoke particle nucleation (CMN scheme). This scheme introduces the cold-trap effect for H2O redistribution, which are fundamentally bottom-up driven by upwelling. These findings provide new insights into PMC formation and water dynamics.
Liang Zhang, Zhongfang Liu, and Brian Tinsley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2047, https://doi.org/10.5194/egusphere-2025-2047, 2025
Short summary
Short summary
Using multi-satellite datasets, the interannual climate variability in upper mesosphere is demonstrated to be anti-phase between the summer and winter hemispheres during solstice months. Summer polar upwelling bottom-up drives opposite water vapor variability between the two hemispheres by cold-trap effect. Subsequently, hemisphere ozone is negatively modulated by water vapor through ozone chemistry, which further influences temperatures above 90 km via radiative and chemical heating.
Liang Zhang, Zhongfang Liu, and Brian Tinsley
EGUsphere, https://doi.org/10.5194/egusphere-2024-1259, https://doi.org/10.5194/egusphere-2024-1259, 2024
Preprint archived
Short summary
Short summary
This study finds that ice particles are sensitive to PMC height rather than temperature, based on which the CMN scheme is proposed for PMC formation. The concentration of charged-MSPs rapidly increases with altitude in line with electrons, and the competition for the limited water vapor results in the opposite distribution of ice particle radius. The CMN scheme provides explanations for a number of puzzling phenomena, and new pathways for solar activity and atmospheric dynamics to affect PMCs.
Zhipeng Zhu, Limin Zhou, and Ziniu Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3636, https://doi.org/10.5194/egusphere-2025-3636, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper introduces a new chemistry-climate model MACO and evaluates its performance through a historical simulation. MACO demonstrates robust capabilities in simulating key middle atmospheric dynamical and chemical processes. Despite some identified biases in the upper stratosphere and mesosphere that require future model improvements, our results suggest that MACO is a suitable tool for middle atmosphere research involving chemistry-climate interactions.
Liang Zhang, Zhongfang Liu, and Brian Tinsley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2330, https://doi.org/10.5194/egusphere-2025-2330, 2025
Short summary
Short summary
Polar mesospheric clouds (PMCs) reflect climate change and in turn influence mesospheric chemistry, but their ice formation remain unclear. We show that PMC height controls ice particle properties and propose a new formation mechanism involving charged meteoric smoke particle nucleation (CMN scheme). This scheme introduces the cold-trap effect for H2O redistribution, which are fundamentally bottom-up driven by upwelling. These findings provide new insights into PMC formation and water dynamics.
Liang Zhang, Zhongfang Liu, and Brian Tinsley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2047, https://doi.org/10.5194/egusphere-2025-2047, 2025
Short summary
Short summary
Using multi-satellite datasets, the interannual climate variability in upper mesosphere is demonstrated to be anti-phase between the summer and winter hemispheres during solstice months. Summer polar upwelling bottom-up drives opposite water vapor variability between the two hemispheres by cold-trap effect. Subsequently, hemisphere ozone is negatively modulated by water vapor through ozone chemistry, which further influences temperatures above 90 km via radiative and chemical heating.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Liang Zhang, Zhongfang Liu, and Brian Tinsley
EGUsphere, https://doi.org/10.5194/egusphere-2024-1259, https://doi.org/10.5194/egusphere-2024-1259, 2024
Preprint archived
Short summary
Short summary
This study finds that ice particles are sensitive to PMC height rather than temperature, based on which the CMN scheme is proposed for PMC formation. The concentration of charged-MSPs rapidly increases with altitude in line with electrons, and the competition for the limited water vapor results in the opposite distribution of ice particle radius. The CMN scheme provides explanations for a number of puzzling phenomena, and new pathways for solar activity and atmospheric dynamics to affect PMCs.
Cited articles
AIM-CIPS: Download PMC data – L2 (orbit strips), http://lasp.colorado.edu/aim/download/pmc/l2, last access: 14 October 2022.
Bardeen, C. G., Marsh, D. R., Jackman, C. H., Hervig, M. E., and Randall, C. E.: Impact of the January 2012 solar proton event on polar mesospheric clouds, J. Geophys. Res.-Atmos., 121, 9165–9173, https://doi.org/10.1002/2016JD024820, 2016.
Carstens, J. N., Bailey, S. M., Lumpe, J. D., and Randall, C. E.: Understanding uncertainties in the retrieval of polar mesospheric clouds from the cloud imaging and particle size experiment in the presence of a bright Rayleigh background, J. Atmos. Sol.-Terr. Phy., 104, 197–212, https://doi.org/10.1016/j.jastp.2013.08.006, 2013.
Dalin, P., Pertsev, N., Perminov, V., Dubietis, A., Zadorozhny, A., Zalcik, M., McEachran, I., McEwan, T., Černis, K., Grønne, J., Taustrup, T., Hansen, O., Andersen, H., Melnikov, D., Wanevich, A., Romejko, V., and Lifatova, D.: Response of noctilucent cloud brightness to daily solar variations, J. Atmos. Sol.-Terr. Phy., 169, 83–90, https://doi.org/10.1016/j.jastp.2018.01.025, 2018.
DeLand, M. T. and Thomas, G. E.: Extending the SBUV polar mesospheric cloud data record with the OMPS NP, Atmos. Chem. Phys., 19, 7913–7925, https://doi.org/10.5194/acp-19-7913-2019, 2019.
Fiedler, J. and Baumgarten, G.: Solar and lunar tides in noctilucent clouds as determined by ground-based lidar, Atmos. Chem. Phys., 18, 16051–16061, https://doi.org/10.5194/acp-18-16051-2018, 2018.
France, J. A., Randall, C. E., Lieberman, R. S., Harvey, V. L., Eckermann, S. D., Siskind, D. E., Lumpe, J. D., Barley, S. M., Carstens, J. N., and Russell III, J. M.: Local and remote planetary wave effects on polar mesospheric clouds in the Northern Hemisphere in 2014, J. Geophys. Res.-Atmos., 123, 5149–5162, https://doi.org/10.1029/2017JD028224, 2018.
Frederick, J. E. and Tinsley, B. A.: The response of longwave radiation at the South Pole to electrical and magnetic variations: Links to meteorological generators and the solar wind, J. Atmos. Sol.-Terr. Phy., 179, 214–224, https://doi.org/10.1016/j.jastp.2018.08.003, 2018.
Frederick, J. E., Tinsley, B. A., and Zhou, L.: Relationships between the solar wind magnetic field and ground-level longwave irradiance at high northern latitudes, J. Atmos. Sol.-Terr. Phy., 193, 105063, https://doi.org/10.1016/j.jastp.2019.105063, 2019.
Freeman, M. P. and Lam, M. M.: Regional, seasonal, and inter-annual variations of Antarctic and sub-Antarctic temperature anomalies related to the Mansurov effect, Environmental Research Communications, 1, 111007, https://doi.org/10.1088/2515-7620/ab4a84, 2019.
Gao, H., Li, L., Bu, L., Zhang, Q., Tang, Y., and Wang, Z.: Effect of small-scale gravity waves on polar mesospheric clouds observed from CIPS/AIM, J. Geophys. Res.-Space, 123, 4026–4045, https://doi.org/10.1029/2017JA024855, 2018.
Gumbel, J. and Megner, L.: Charged meteoric smoke as ice nuclei in the mesosphere: Part 1 – A review of basic concepts, J. Atmos. Sol.-Terr. Phy., 71, 1225–1235, https://doi.org/10.1016/j.jastp.2009.04.012, 2009.
Hervig, M. E., Gordley, L. L., Stevens, M. H., Russel III, J. M., Bailey, J. M., and Baumgarten, G.: Interpretation of SOFIE PMC measurements: Cloud identification and derivation of mass density, particle shape, and particle size, J. Atmos. Sol.-Terr. Phy., 71, 316–330, https://doi.org/10.1016/j.jastp.2008.07.009, 2009.
Hervig, M. E., Deaver, L. E., Bardeen, C. G., Russell, J. M., Bailey, S. M., and Gordley, L. L.: The content and composition of meteoric smoke in mesospheric ice particles from SOFIE observations, J. Atmos. Sol.-Terr. Phy., 84–85, 1–6, https://doi.org/10.1016/j.jastp.2012.04.005, 2012.
Hervig, M. E., Siskind, D. E., Bailey, S. M., Merkel, A. W., DeLand, M. T., and Russell, J. M.: The missing solar cycle response of the polar summer mesosphere, Geophys. Res. Lett., 46, 10132–10139, https://doi.org/10.1029/2019GL083485, 2019.
Lam, M. M. and Tinsley, B. A.: Solar wind-atmospheric electricity-cloud microphysics connections to weather and climate, J. Atmos. Sol.-Terr. Phy., 149, 277–290, https://doi.org/10.1016/j.jastp.2015.10.019, 2016.
Lam, M. M., Chisham, G., and Freeman, M. P.: The interplanetary magnetic field influences mid-latitude surface atmospheric pressure, Environ. Res. Lett., 8, 045001, https://doi.org/10.1088/1748-9326/8/4/045001, 2013.
Lam, M. M., Chisham, G., and Freeman, M. P.: Solar wind-driven geopotential height anomalies originate in the Antarctic lower troposphere, Geophys. Res. Lett., 41, 6509–6514, https://doi.org/10.1002/2014GL061421, 2014.
Lam, M. M., Freeman, M. P., and Chisham, G.: IMF-driven change to the Antarctic tropospheric temperature due to the global atmospheric electric circuit, J. Atmos. Sol.-Terr. Phy., 180, 148–152, https://doi.org/10.1016/j.jastp.2017.08.027, 2018.
Liu, X., Yue, J., Xu, J., Yuan, W., Russell III, J. M., Hervig, M. E., and Nakamura, T.: Persistent longitudinal variations in 8 years of CIPS/AIM polar mesospheric clouds, J. Geophys. Res.-Atmos., 121, 8390–8409, https://doi.org/10.1002/2015JD024624, 2016.
Lumpe, J. D., Bailey, S. M., Carstens, J. N., Randall, C. E., Rusch, D. W., Thomas, G. E., Nielsen, K., Jeppesen, C., McClintock, W. E., Merkel, A. W., Riesberg, L., Templeman, B., Baumgarten, G., and Russell III, J. M.: Retrieval of polar mesospheric cloud properties from CIPS: Algorithm description, error analysis and cloud detection sensitivity, J. Atmos. Sol.-Terr. Phy., 104, 167–196, https://doi.org/10.1016/j.jastp.2013.06.007, 2013.
Megner, L. and Gumbel, J.: Charged meteoric particles as ice nuclei in the mesosphere: Part 2: A feasibility study, J. Atmos. Sol.-Terr. Phy., 71, 1236–1244, https://doi.org/10.1016/j.jastp.2009.05.002, 2009.
Megner, L., Gumbel, J., Rapp, M., and Siskind, D. E.: Reduced meteoric smoke particle density at the summer pole – Implications for mesospheric ice particle nucleation, Adv. Space Res., 41, 41–49, https://doi.org/10.1016/j.asr.2007.09.006, 2008a.
Megner, L., Siskind, D. E., Rapp, M., and Gumbel, J.: Global and temporal distribution of meteoric smoke: A two-dimensional simulation study, J. Geophys. Res.-Atmos., 113, D03202, https://doi.org/10.1029/2007JD009054, 2008b.
Murray, B. J. and Jensen, E.: Homogeneous nucleation of amorphous solid water particles in the upper mesosphere, J. Atmos. Sol.-Terr. Phy., 72, 51–61, https://doi.org/10.1016/j.jastp.2009.10.007, 2010.
NASA: Interface to produce plots, listings or output files from OMNI 2, https://omniweb.gsfc.nasa.gov/form/dx1.html, last access: 14 October 2022.
Nicoll, K. A. and Harrison, R. G.: Stratiform cloud electrification: comparison of theory with multiple in-cloud measurements, Q. J. Roy. Meteor. Soc., 142, 2679–2691, https://doi.org/10.1002/qj.2858, 2016.
Plane, J. M. C., Saunders, R. W., Hedin, J., Stegman, J., Khaplanov, M., Gumbel, J., Lynch, K. A., Bracikowski, P. J., Gelinas, L. J., Friedrich, M., Blindheim, S., Gausa, M., and Williams, B. P.: A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere, J. Atmos. Sol.-Terr. Phy., 118, 151–160, https://doi.org/10.1016/j.jastp.2013.11.008, 2014.
Rapp, M. and Lübken, F.-J.: Polar mesosphere summer echoes (PMSE): Review of observations and current understanding, Atmos. Chem. Phys., 4, 2601–2633, https://doi.org/10.5194/acp-4-2601-2004, 2004.
Rapp, M. and Thomas, G. E.: Modeling the Microphysics of mesospheric ice particles: Assessment of current capabilities and basic sensitivities, J. Atmos. Sol.-Terr. Phy., 68, 715–744, https://doi.org/10.1016/j.jastp.2005.10.015, 2006.
Robert, C. E., von Savigny, C., Rahpoe, N., Bovensmann, H., Burrows, J. P., DeLand, M. T., and Schwartz, M. J.: First evidence of a 27 day solar signature in noctilucent cloud occurrence frequency, J. Geophys. Res., 115, D00I12, https://doi.org/10.1029/2009JD012359, 2010.
Robertson, S., Dickson, S., Horányi, M., Sternovsky, Z., Friedrich, M., Janches, D., Megner, L., and Williams, B.: Detection of meteoric smoke particles in the mesosphere by a rocket-borne mass spectrometer, J. Atmos. Sol.-Terr. Phy., 118, 161–179, https://doi.org/10.1016/j.jastp.2013.07.007, 2014.
Shapiro, A. V., Rozanov, E., Shapiro, A. I., Wang, S., Egorova, T., Schmutz, W., and Peter, Th.: Signature of the 27-day solar rotation cycle in mesospheric OH and H2O observed by the Aura Microwave Limb Sounder, Atmos. Chem. Phys., 12, 3181–3188, https://doi.org/10.5194/acp-12-3181-2012, 2012.
Slyunyaev, N. N., Kalinin, A. V., and Mareev, E. A.: Thunderstorm generators operating as voltage sources in global electric circuit models, J. Atmos. Sol.-Terr. Phy., 183, 99–109, https://doi.org/10.1016/j.jastp.2018.12.013, 2019.
Stevens, M. H., Liebermann, R. S., Siskind, D. E., McCormack, J. P., Hervig, M. E., and Englert, C. R.: Periodicities of polar mesospheric clouds inferred from a meteorological analysis and forecast system, J. Geophys. Res.-Atmos., 122, 4508–4527, https://doi.org/10.1002/2016JD025349, 2017.
Strelnikov, B., Staszak, T., Latteck, R., Renkwitz, T., Strelnikova, I., Lübken, F.-J., Baumgarten, G., Fiedler, J., Chau, J. L., Stude, J., Rapp, M., Friedrich, M., Gumbel, J., Hedin, J., Belova, E., Hörschgen-Eggers, M., Giono, G., Hörner, I., Löhle, S., Eberhart, M., and Fasoulas, S.: Sounding rocket project “PMWE” for investigation of polar mesosphere winter echoes, J. Atmos. Sol.-Terr. Phy., 218, 105596, https://doi.org/10.1016/j.jastp.2021.105596, 2021.
Tanaka, K. K., Mann, I., and Kimura, Y.: Formation of ice particles through nucleation in the mesosphere, Atmos. Chem. Phys., 22, 5639–5650, https://doi.org/10.5194/acp-22-5639-2022, 2022.
Thomas, G. E., Thurairajah, B., Hervig, M. E., von Savigny, C., and Snow, M.: Solar-induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: Drivers of polar mesospheric cloud variability, J. Atmos. Sol.-Terr. Phy., 134, 56–68, https://doi.org/10.1016/j.jastp.2015.09.015, 2015.
Thurairajah, B., Thomas, G. E., von Savigny, C., Snow, M., Hervig, M. E., Bailey, S. M., and Randall, C. E.: Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments, J. Atmos. Sol.-Terr. Phy., 162, 122–135, https://doi.org/10.1016/j.jastp.2016.09.008, 2017.
Tinsley, B. A. and Heelis, R. A.: Correlations of atmospheric dynamics with solar activity Evidence for a connection via the solar wind, atmospheric electricity, and cloud microphysics, J. Geophys. Res., 98, 10375–10387, https://doi.org/10.1029/93JD00627, 1993.
Tinsley, B. A., Zhou, L., Wang, L., and Zhang, L.: Seasonal and solar wind sector duration influences on the correlation of high latitude clouds with ionospheric potential, J. Geophys. Res.-Atmos., 126, e2020JD034201, https://doi.org/10.1029/2020JD034201, 2021.
von Savigny, C., DeLand, M. T., and Schwartz, M. J.: First identification of lunar tides in satellite observations of noctilucent clouds, J. Atmos. Sol.-Terr. Phy., 162, 116–121, https://doi.org/10.1016/j.jastp.2016.07.002, 2017.
Williams, E. and Mareev, E.: Recent progress on the global electrical circuit, Atmos, Res., 135–136, 208–227, https://doi.org/10.1016/j.atmosres.2013.05.015, 2014.
Wilms, H., Rapp, M., and Kirsch, A.: Nucleation of mesospheric cloud particles: Sensitivities and limits, J. Geophys. Res.-Space, 121, 2621–2644, https://doi.org/10.1002/2015JA021764, 2016.
Winkler, H., von Savigny, C., Burrows, J. P., Wissing, J. M., Schwartz, M. J., Lambert, A., and García-Comas, M.: Impacts of the January 2005 solar particle event on noctilucent clouds and water at the polar summer mesopause, Atmos. Chem. Phys., 12, 5633–5646, https://doi.org/10.5194/acp-12-5633-2012, 2012.
Yu, F. and Turco, R.: Ultrafine aerosol formation via ion-mediated nucleation, Geophys. Res. Lett., 27, 883–886, https://doi.org/10.1029/1999GL011151, 2000.
Yu, F., Wang, Z., Luo, G., and Turco, R.: Ion-mediated nucleation as an important global source of tropospheric aerosols, Atmos. Chem. Phys., 8, 2537–2554, https://doi.org/10.5194/acp-8-2537-2008, 2008.
Zhang, L. and Tinsley, B. A.: Parameterization of aerosol scavenging due to atmospheric ionization under varying relative humidity, J. Geophys. Res.-Atmos., 122, 5330–5350, https://doi.org/10.1002/2016JD026255, 2017.
Zhang, L. and Tinsley, B. A.: Parameterization of in-cloud aerosol scavenging due to atmospheric ionization: 2. Effects of varying particle density, J. Geophys. Res.-Atmos., 123, 3099–3115, https://doi.org/10.1002/2017JD027884, 2018.
Zhang, L., Tinsley, B. A., and Zhou, L.: Parameterization of in-cloud aerosol scavenging due to atmospheric ionization: part 3. Effects of varying droplet radius, J. Geophys. Res.-Atmos., 123, 10546–10567, https://doi.org/10.1029/2018JD028840, 2018.
Zhang, L., Tinsley, B., and Zhou, L.: Parameterization of in-cloud aerosol scavenging due to atmospheric ionization: part 4. Effects of varying altitude, J. Geophys. Res.-Atmos., 124, 13105–13126, https://doi.org/10.1029/2018JD030126, 2019.
Zhou, L. and Tinsley, B. A.: Production of space charge at the boundaries of layer clouds, J. Geophys. Res., 112, D11203, https://doi.org/10.1029/2006JD007998, 2007.
Zhou, L. and Tinsley, B. A.: Time dependent charging of layer clouds in the global electric circuit, Adv. Space Res., 50, 828–842, https://doi.org/10.1016/j.asr.2011.12.018, 2012.
Short summary
Both the day-to-day analysis and superposed epoch analysis of the noctilucent cloud (NLC) data revealed conspicuous correlations between NLCs and the solar wind magnetic fields, in both polar regions. The responses in the Southern Hemisphere and Northern Hemisphere are opposite, and the lag time is fairly short. These two features are beyond the explanations of previously proposed solar photodissociation origin or dynamic origin for the solar–NLC link, and a possible new mechanism is discussed.
Both the day-to-day analysis and superposed epoch analysis of the noctilucent cloud (NLC) data...
Altmetrics
Final-revised paper
Preprint