Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13355-2022
https://doi.org/10.5194/acp-22-13355-2022
Research article
 | 
18 Oct 2022
Research article |  | 18 Oct 2022

Responses of CIPS/AIM noctilucent clouds to the interplanetary magnetic field

Liang Zhang, Brian Tinsley, and Limin Zhou

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
The 2019 Raikoke volcanic eruption – Part 2: Particle-phase dispersion and concurrent wildfire smoke emissions
Martin J. Osborne, Johannes de Leeuw, Claire Witham, Anja Schmidt, Frances Beckett, Nina Kristiansen, Joelle Buxmann, Cameron Saint, Ellsworth J. Welton, Javier Fochesatto, Ana R. Gomes, Ulrich Bundke, Andreas Petzold, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys., 22, 2975–2997, https://doi.org/10.5194/acp-22-2975-2022,https://doi.org/10.5194/acp-22-2975-2022, 2022
Short summary
Solar and lunar tides in noctilucent clouds as determined by ground-based lidar
Jens Fiedler and Gerd Baumgarten
Atmos. Chem. Phys., 18, 16051–16061, https://doi.org/10.5194/acp-18-16051-2018,https://doi.org/10.5194/acp-18-16051-2018, 2018
Short summary
Measurements of global distributions of polar mesospheric clouds during 2005–2012 by MIPAS/Envisat
Maya García-Comas, Manuel López-Puertas, Bernd Funke, Á. Aythami Jurado-Navarro, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, and Michael Höpfner
Atmos. Chem. Phys., 16, 6701–6719, https://doi.org/10.5194/acp-16-6701-2016,https://doi.org/10.5194/acp-16-6701-2016, 2016
Short summary
NLC and the background atmosphere above ALOMAR
J. Fiedler, G. Baumgarten, U. Berger, P. Hoffmann, N. Kaifler, and F.-J. Lübken
Atmos. Chem. Phys., 11, 5701–5717, https://doi.org/10.5194/acp-11-5701-2011,https://doi.org/10.5194/acp-11-5701-2011, 2011
Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999–2008
N. Kaifler, G. Baumgarten, J. Fiedler, R. Latteck, F.-J. Lübken, and M. Rapp
Atmos. Chem. Phys., 11, 1355–1366, https://doi.org/10.5194/acp-11-1355-2011,https://doi.org/10.5194/acp-11-1355-2011, 2011

Cited articles

AIM-CIPS: Download PMC data – L2 (orbit strips), http://lasp.colorado.edu/aim/download/pmc/l2, last access: 14 October 2022. 
Bardeen, C. G., Marsh, D. R., Jackman, C. H., Hervig, M. E., and Randall, C. E.: Impact of the January 2012 solar proton event on polar mesospheric clouds, J. Geophys. Res.-Atmos., 121, 9165–9173, https://doi.org/10.1002/2016JD024820, 2016. 
Carstens, J. N., Bailey, S. M., Lumpe, J. D., and Randall, C. E.: Understanding uncertainties in the retrieval of polar mesospheric clouds from the cloud imaging and particle size experiment in the presence of a bright Rayleigh background, J. Atmos. Sol.-Terr. Phy., 104, 197–212, https://doi.org/10.1016/j.jastp.2013.08.006, 2013. 
Dalin, P., Pertsev, N., Perminov, V., Dubietis, A., Zadorozhny, A., Zalcik, M., McEachran, I., McEwan, T., Černis, K., Grønne, J., Taustrup, T., Hansen, O., Andersen, H., Melnikov, D., Wanevich, A., Romejko, V., and Lifatova, D.: Response of noctilucent cloud brightness to daily solar variations, J. Atmos. Sol.-Terr. Phy., 169, 83–90, https://doi.org/10.1016/j.jastp.2018.01.025, 2018. 
DeLand, M. T. and Thomas, G. E.: Extending the SBUV polar mesospheric cloud data record with the OMPS NP, Atmos. Chem. Phys., 19, 7913–7925, https://doi.org/10.5194/acp-19-7913-2019, 2019. 
Download
Short summary
Both the day-to-day analysis and superposed epoch analysis of the noctilucent cloud (NLC) data revealed conspicuous correlations between NLCs and the solar wind magnetic fields, in both polar regions. The responses in the Southern Hemisphere and Northern Hemisphere are opposite, and the lag time is fairly short. These two features are beyond the explanations of previously proposed solar photodissociation origin or dynamic origin for the solar–NLC link, and a possible new mechanism is discussed.
Altmetrics
Final-revised paper
Preprint