Articles | Volume 22, issue 19
https://doi.org/10.5194/acp-22-13219-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13219-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A single-parameter hygroscopicity model for functionalized insoluble aerosol surfaces
Chun-Ning Mao
Department of Chemical and Biomolecular Engineering, University of
Maryland, College Park, MD 20742, USA
Kanishk Gohil
Department of Chemical and Biomolecular Engineering, University of
Maryland, College Park, MD 20742, USA
Department of Chemical and Biomolecular Engineering, University of
Maryland, College Park, MD 20742, USA
Department of Chemistry and Biochemistry, University of Maryland,
College Park, MD 20742, USA
Related authors
Kanishk Gohil, Chun-Ning Mao, Dewansh Rastogi, Chao Peng, Mingjin Tang, and Akua Asa-Awuku
Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022, https://doi.org/10.5194/acp-22-12769-2022, 2022
Short summary
Short summary
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially used for the analysis of any type of atmospheric compound. HAM may potentially improve the representation of hygroscopicity of organic aerosols in large-scale global climate models (GCMs), hence reducing the uncertainties in the climate forcing due to the aerosol indirect effect.
Nahin Ferdousi-Rokib, Stephanie Jacoby, N. Cazimir Armstrong, Alana Dodero, Martin Changman Ahn, Ergine Zephira Remy, Zhenfa Zhang, Avram Gold, Joseph L. Woo, Yue Zhang, Jason D. Surratt, and Akua A. Asa-Awuku
EGUsphere, https://doi.org/10.5194/egusphere-2025-1935, https://doi.org/10.5194/egusphere-2025-1935, 2025
Short summary
Short summary
This study looks at how natural compounds when mixed with salts in the air affect how clouds form. These compounds come from plants and are found all over the world. They are sticky, and this changes how water droplets and clouds form. Sometimes the compound spreads more easily when mixed with salt, while the other compound does not change. Depending on the condition, these mixtures can behave differently, which affects how we predict cloud formation.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Kanishk Gohil, Chun-Ning Mao, Dewansh Rastogi, Chao Peng, Mingjin Tang, and Akua Asa-Awuku
Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022, https://doi.org/10.5194/acp-22-12769-2022, 2022
Short summary
Short summary
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially used for the analysis of any type of atmospheric compound. HAM may potentially improve the representation of hygroscopicity of organic aerosols in large-scale global climate models (GCMs), hence reducing the uncertainties in the climate forcing due to the aerosol indirect effect.
Kanishk Gohil and Akua A. Asa-Awuku
Atmos. Meas. Tech., 15, 1007–1019, https://doi.org/10.5194/amt-15-1007-2022, https://doi.org/10.5194/amt-15-1007-2022, 2022
Short summary
Short summary
This work develops a methodology and software to study and analyze the cloud-droplet-forming ability of aerosols with an aerodynamic aerosol classifier (AAC). This work quantifies the uncertainties in size-resolved measurements and subsequent uncertainties propagated to cloud droplet parameterizations. Lastly, we present the best practices for AAC cloud droplet measurement.
Chao Peng, Patricia N. Razafindrambinina, Kotiba A. Malek, Lanxiadi Chen, Weigang Wang, Ru-Jin Huang, Yuqing Zhang, Xiang Ding, Maofa Ge, Xinming Wang, Akua A. Asa-Awuku, and Mingjin Tang
Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, https://doi.org/10.5194/acp-21-7135-2021, 2021
Short summary
Short summary
Organosulfates are important constituents in tropospheric aerosol particles, but their hygroscopic properties and cloud condensation nuclei activities are not well understood. In our work, three complementary techniques were employed to investigate the interactions of 11 organosulfates with water vapor under sub- and supersaturated conditions.
Cited articles
Cziczo, D. J., Froyd, K. D., Gallavardin, S. J., Moehler, O., Benz, S.,
Saathoff, H., and Murphy, D. M.: Deactivation of ice nuclei due to
atmospherically relevant surface coatings, Environ. Res. Lett., 4,
044013, https://doi.org/10.1088/1748-9326/4/4/044013, 2009.
Dalirian, M., Ylisirniö, A., Buchholz, A., Schlesinger, D., Ström, J., Virtanen, A., and Riipinen, I.: Cloud droplet activation of black carbon particles coated with organic compounds of varying solubility, Atmos. Chem. Phys., 18, 12477–12489, https://doi.org/10.5194/acp-18-12477-2018, 2018.
Dawson, J. N., Malek, K. A., Razafindrambinina, P. N., Raymond, T. M.,
Dutcher, D. D., Asa-Awuku, A. A., and Freedman, M. A.: Direct Comparison of
the Submicron Aerosol Hygroscopicity of Water-Soluble Sugars, ACS Earth Space Chem., 4, 2215–2226, https://doi.org/10.1021/acsearthspacechem.0c00159, 2020.
Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J.,
Walter, S., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and
Andreae, M. O.: Size matters more than chemistry for cloud-nucleating
ability of aerosol particles, Science, 312, 1375–1378,
https://doi.org/10.1126/science.1125261, 2006.
Flory, P. J.: The Thermodynamics of High Polymer Solutions, J. Chem. Phys., 10, 51, https://doi.org/10.1063/1.1723621, 1942.
Gohil, K., Mao, C.-N., Rastogi, D., Peng, C., Tang, M., and Asa-Awuku, A.: Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth, Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022, 2022.
Hatch, C. D., Wiese, J. S., Crane, C. C., Harris, K. J., Kloss, H. G., and
Baltrusaitis, J.: Water Adsorption on Clay Minerals As a Function of
Relative Humidity: Application of BET and Freundlich Adsorption Models,
Langmuir, 28, 1790–1803, https://doi.org/10.1021/la2042873, 2012.
Hatch, C. D., Greenaway, A. L., Christie, M. J., and Baltrusaitis, J.: Water
adsorption constrained Frenkel–Halsey–Hill adsorption activation theory:
Montmorillonite and illite, Atmos. Environ., 87, 26–33,
https://doi.org/10.1016/J.ATMOSENV.2013.12.040, 2014.
Herich, H., Tritscher, T., Wiacek, A., Gysel, M., Weingartner, E., Ulrike,
L., Urs, B., and Cziczo, D. J.: Water uptake of clay and desert dust aerosol
particles at sub- and supersaturated water vapor conditions, Phys. Chem.
Chem. Phys., 11, 7804–7809, https://doi.org/10.1039/B901585J, 2009.
Hoppel, W. A., Twomey, S., and Wojciechowski, T. A.: A segmented thermal
diffusion chamber for continuous measurements of CN, J. Aerosol Sci., 10, 369–373, https://doi.org/10.1016/0021-8502(79)90031-4, 1979.
Karydis, V. A., Tsimpidi, A. P., Bacer, S., Pozzer, A., Nenes, A., and Lelieveld, J.: Global impact of mineral dust on cloud droplet number concentration, Atmos. Chem. Phys., 17, 5601–5621, https://doi.org/10.5194/acp-17-5601-2017, 2017.
Koehler, K. A., Demott, P. J., Kreidenweis, S. M., Popovicheva, O. B.,
Petters, M. D., Carrico, C. M., Kireeva, E. D., Khokhlova, T. D., and
Shonija, N. K.: Cloud condensation nuclei and ice nucleation activity of
hydrophobic and hydrophilic soot particles, Phys. Chem. Chem. Phys., 11,
7906–7920, https://doi.org/10.1039/B905334B, 2009.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets,
T. Faraday Soc., 32, 1152–1161, https://doi.org/10.1039/TF9363201152, 1936.
Kumar, P., Nenes, A., and Sokolik, I. N.: Importance of adsorption for CCN
activity and hygroscopic properties of mineral dust aerosol, Geophys. Res.
Lett., 36, L24804, https://doi.org/10.1029/2009GL040827, 2009.
Lintis, L., Ouf, F. X., Parent, P., Ferry, D., Laffon, C., and Vallières,
C.: Quantification and prediction of water uptake by soot deposited on
ventilation filters during fire events, J. Hazard. Mater., 403, 123916,
https://doi.org/10.1016/j.jhazmat.2020.123916, 2021.
Malek, K. A., Gohil, K., Al-Abadleh, H. A., and Asa-Awuku, A. A.:
Hygroscopicity of polycatechol and polyguaiacol secondary organic aerosol in
sub- and supersaturated water vapor environments, Environ. Sci.: Atmos.,
2, 24–33, https://doi.org/10.1039/D1EA00063B, 2022.
Mao, C. N., Malek, K. A., and Asa-Awuku, A.: Hygroscopicity and the
water-polymer interaction parameter of nano-sized biodegradable hydrophilic
substances, Aerosol Sci. Tech., 55, 1115–1124, https://doi.org/10.1080/02786826.2021.1931012, 2021.
Miles, R. E. H., Rudić, S., Orr-Ewing, A. J., and Reid, J. P.: Sources of
Error and Uncertainty in the Use of Cavity Ring Down Spectroscopy to Measure
Aerosol Optical Properties, Aerosol Sci. Tech., 45, 1360–1375,
https://doi.org/10.1080/02786826.2011.596170, 2011.
Moore, R. H., Nenes, A., and Medina, J.: Scanning Mobility CCN Analysis—A
Method for Fast Measurements of Size-Resolved CCN Distributions and
Activation Kinetics, Aerosol Sci. Tech., 44, 861–871,
https://doi.org/10.1080/02786826.2010.498715, 2010.
Navea, J. G., Richmond, E., Stortini, T., and Greenspan, J.: Water Adsorption
Isotherms on Fly Ash from Several Sources, Langmuir, 33, 10161–10171,
https://doi.org/10.1021/acs.langmuir.7b02028, 2017.
Ottewill, R. H. and Vincent, B.: Colloid and surface chemistry of polymer
latices. Part 1.—Adsorption and wetting behaviour of n-alkanols, J. Chem.
Soc. Farad. T. 1, 68, 1533–1543, https://doi.org/10.1039/F19726801533, 1972.
Pajunoja, A., Lambe, A. T., Hakala, J., Rastak, N., Cummings, M. J., Brogan,
J. F., Hao, L., Paramonov, M., Hong, J., Prisle, N. L., Malila, J.,
Romakkaniemi, S., Lehtinen, K. E. J., Laaksonen, A., Kulmala, M., Massoli,
P., Onasch, T. B., Donahue, N. M., Riipinen, I., Davidovits, P., Worsnop, D.
R., Petäjä, T., and Virtanen, A.: Adsorptive uptake of water by
semisolid secondary organic aerosols, Geophys. Res. Lett., 42, 3063–3068, https://doi.org/10.1002/2015GL063142, 2015.
Peng, C., Razafindrambinina, P. N., Malek, K. A., Chen, L., Wang, W., Huang, R.-J., Zhang, Y., Ding, X., Ge, M., Wang, X., Asa-Awuku, A. A., and Tang, M.: Interactions of organosulfates with water vapor under sub- and supersaturated conditions, Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, 2021.
Peng, C., Malek, K. A., Rastogi, D., Zhang, Y., Wang, W., Ding, X.,
Asa-Awuku, A. A., Wang, X., and Tang, M.: Hygroscopicity and cloud
condensation nucleation activities of hydroxyalkylsulfonates, Sci. Total
Environ., 830, 154767, https://doi.org/10.1016/j.scitotenv.2022.154767, 2022.
Pethrick, R.: Polymer physics, edited by: Rubinstein, M., and
Colby, R. H., Oxford University Press, Oxford, 440 pp., ISBN 019852059X, Wiley, 2003.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 2: Including solubility, Atmos. Chem. Phys., 8, 6273–6279, https://doi.org/10.5194/acp-8-6273-2008, 2008.
Petters, M. D., Kreidenweis, S. M., Snider, J. R., Koehler, K. A., Wang, Q.,
Prenni, A. J., and Demott, P. J.: Cloud droplet activation of polymerized
organic aerosol, Tellus B, 58, 196–205, https://doi.org/10.1111/j.1600-0889.2006.00181.x, 2006.
Petters, M. D., Kreidenweis, S. M., Prenni, A. J., Sullivan, R. C., Carrico,
C. M., Koehler, K. A., and Ziemann, P. J.: Role of molecular size in cloud
droplet activation, Geophys. Res. Lett., 36, L22801, https://doi.org/10.1029/2009GL040131, 2009.
Pettersson, A., Lovejoy, E. R., Brock, C. A., Brown, S. S., and Ravishankara,
A. R.: Measurement of aerosol optical extinction at 532 nm with pulsed
cavity ring down spectroscopy, J. Aerosol Sci., 35, 995–1011,
https://doi.org/10.1016/j.jaerosci.2004.02.008, 2004.
Reitz, P., Spindler, C., Mentel, T. F., Poulain, L., Wex, H., Mildenberger, K., Niedermeier, D., Hartmann, S., Clauss, T., Stratmann, F., Sullivan, R. C., DeMott, P. J., Petters, M. D., Sierau, B., and Schneider, J.: Surface modification of mineral dust particles by sulphuric acid processing: implications for ice nucleation abilities, Atmos. Chem. Phys., 11, 7839–7858, https://doi.org/10.5194/acp-11-7839-2011, 2011.
Roberts, G. C. and Nenes, A.: A Continuous-Flow Streamwise Thermal-Gradient
CCN Chamber for Atmospheric Measurements, Aerosol Sci. Tech., 39, 206–221, https://doi.org/10.1080/027868290913988, 2005.
Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179, https://doi.org/10.5194/acp-8-1153-2008, 2008.
Singh, S., Fiddler, M. N., Smith, D., and Bililign, S.: Error analysis and
uncertainty in the determination of aerosol optical properties using cavity
ring-down spectroscopy, integrating nephelometry, and the
extinction-minus-scattering method, Aerosol Sci. Tech., 48, 1345–1359, https://doi.org/10.1080/02786826.2014.984062, 2014.
Sorjamaa, R. and Laaksonen, A.: The effect of H2O adsorption on cloud drop activation of insoluble particles: a theoretical framework, Atmos. Chem. Phys., 7, 6175–6180, https://doi.org/10.5194/acp-7-6175-2007, 2007.
Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and Prather, K. A.: Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles, Atmos. Chem. Phys., 9, 3303–3316, https://doi.org/10.5194/acp-9-3303-2009, 2009.
Sullivan, R. C., Petters, M. D., DeMott, P. J., Kreidenweis, S. M., Wex, H., Niedermeier, D., Hartmann, S., Clauss, T., Stratmann, F., Reitz, P., Schneider, J., and Sierau, B.: Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation, Atmos. Chem. Phys., 10, 11471–11487, https://doi.org/10.5194/acp-10-11471-2010,
2010.
Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with
Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation,
and Ice Nucleation, Chem. Rev., 116, 4205–4259,
https://doi.org/10.1021/acs.chemrev.5b00529, 2016.
Wang, S. C. and Flagan, R. C.: Scanning electrical mobility spectrometer,
Aerosol Sci. Tech., 13, 230–240, https://doi.org/10.1080/02786829008959441, 1990.
Short summary
The impact of molecular-level surface chemistry for aerosol water uptake and droplet growth is not well understood. In this work we show changes in water uptake due to molecular-level surface chemistry can be measured and quantified. In addition, we develop a single-parameter model, representing changes in aerosol chemistry that can be used in global climate models to reduce the uncertainty in aerosol-cloud predictions.
The impact of molecular-level surface chemistry for aerosol water uptake and droplet growth is...
Altmetrics
Final-revised paper
Preprint