Articles | Volume 22, issue 18
https://doi.org/10.5194/acp-22-12467-2022
https://doi.org/10.5194/acp-22-12467-2022
Research article
 | 
23 Sep 2022
Research article |  | 23 Sep 2022

Highly supercooled riming and unusual triple-frequency radar signatures over McMurdo Station, Antarctica

Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon

Data sets

Ka ARM Zenith Radar (KAZRMD), 2015-11-17 to 2017-01-02, ARM Mobile Facility (AWR) McMurdo Station Ross Ice Shelf, Antarctica; AMF2 (M1) Atmospheric Radiation Measurement (ARM) user facility https://doi.org/10.5439/1095601

Marine W-Band (95 GHz) ARM Cloud Radar (MWACR), 2015-11-17 to 2016-03-20, ARM Mobile Facility (AWR) McMurdo Station Ross Ice Shelf, Antarctica; AMF2 (M1) Atmospheric Radiation Measurement (ARM) user facility https://doi.org/10.5439/1150242

X-Band Scanning ARM Cloud Radar (XSACRVPT), 2015-12-06 to 2016-07-15, ARM Mobile Facility (AWR) McMurdo Station Ross Ice Shelf, Antarctica; AMF2 (M1) Atmospheric Radiation Measurement (ARM) user facility https://doi.org/10.5439/1150303

Balloon-Borne Sounding System (SONDEWNPN), 2015-11-30 to 2017-01-03, ARM Mobile Facility (AWR) McMurdo Station Ross Ice Shelf, Antarctica; AMF2 (M1) Atmospheric Radiation Measurement (ARM) user facility https://doi.org/10.5439/1595321

Download
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Altmetrics
Final-revised paper
Preprint