Articles | Volume 22, issue 18
https://doi.org/10.5194/acp-22-12417-2022
https://doi.org/10.5194/acp-22-12417-2022
Research article
 | 
22 Sep 2022
Research article |  | 22 Sep 2022

Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations

Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Silvia M. Calderón on behalf of the Authors (10 Aug 2022)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (12 Aug 2022) by Thijs Heus
RR by Anonymous Referee #2 (26 Aug 2022)
ED: Publish as is (26 Aug 2022) by Thijs Heus
AR by Silvia M. Calderón on behalf of the Authors (30 Aug 2022)  Manuscript 
Download
Short summary
The spatial and temporal restrictions of observations and oversimplified aerosol representation in large eddy simulations (LES) limit our understanding of aerosol–stratocumulus interactions. In this closure study of in situ and remote sensing observations and outputs from UCLALES–SALSA, we have assessed the role of convective overturning and aerosol effects in two cloud events observed at the Puijo SMEAR IV station, Finland, a diurnal-high aerosol case and a nocturnal-low aerosol case.
Altmetrics
Final-revised paper
Preprint