Articles | Volume 22, issue 18
https://doi.org/10.5194/acp-22-12241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-12241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Life cycle of stratocumulus clouds over 1 year at the coast of the Atacama Desert
Inst. for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Camilo del Rio
Inst. de Geografia Pontificia, Universidad Católica de Chile, Santiago, Chile
Centro UC Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile
Juan-Luis García
Inst. de Geografia Pontificia, Universidad Católica de Chile, Santiago, Chile
Centro UC Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile
Pablo Osses
Inst. de Geografia Pontificia, Universidad Católica de Chile, Santiago, Chile
Centro UC Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile
Sarah Westbrook
Inst. for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Ulrich Löhnert
Inst. for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Related authors
No articles found.
Paolo Andreozzi, Mark D. Fielding, Robin J. Hogan, Richard M. Forbes, Samuel Rémy, Birger Bohn, and Ulrich Löhnert
EGUsphere, https://doi.org/10.5194/egusphere-2025-3790, https://doi.org/10.5194/egusphere-2025-3790, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols significantly contribute to the Earth’s climate, but models still struggle at representing them. Here we use satellite observations of clouds to improve aerosols in our weather and air-quality model. We show that African wildfires induce too bright simulated clouds and that our model removes too much aerosol from ice-containing clouds. This showcases how our approach effectively targets poorly observed aerosol processes, potentially informing weather forecasting and climate models.
Tobias Böck, Moritz Löffler, Tobias Marke, Bernhard Pospichal, Christine Knist, and Ulrich Löhnert
EGUsphere, https://doi.org/10.5194/egusphere-2025-1727, https://doi.org/10.5194/egusphere-2025-1727, 2025
Short summary
Short summary
We investigated how accurate modern ground-based weather sensors are in measuring temperature and humidity within the lower atmosphere. We identified different types of small but important measurement errors inherent to the instrument. Understanding these issues helps improve data quality and supports better short-term weather forecasts using sensor networks across Europe.
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo del Río
Hydrol. Earth Syst. Sci., 29, 109–125, https://doi.org/10.5194/hess-29-109-2025, https://doi.org/10.5194/hess-29-109-2025, 2025
Short summary
Short summary
Water resources are fundamental for the social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligate us to find new water resources. Fog harvesting (FH) emerges as a complementary resource in regions where it is abundant but untapped. This research proposes a model to estimate FH potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where FH could be a viable water source.
Sabrina Schnitt, Andreas Foth, Heike Kalesse-Los, Mario Mech, Claudia Acquistapace, Friedhelm Jansen, Ulrich Löhnert, Bernhard Pospichal, Johannes Röttenbacher, Susanne Crewell, and Bjorn Stevens
Earth Syst. Sci. Data, 16, 681–700, https://doi.org/10.5194/essd-16-681-2024, https://doi.org/10.5194/essd-16-681-2024, 2024
Short summary
Short summary
This publication describes the microwave radiometric measurements performed during the EUREC4A campaign at Barbados Cloud Observatory (BCO) and aboard RV Meteor and RV Maria S Merian. We present retrieved integrated water vapor (IWV), liquid water path (LWP), and temperature and humidity profiles as a unified, quality-controlled, multi-site data set on a 3 s temporal resolution for a core period between 19 January 2020 and 14 February 2020.
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024, https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary
Short summary
In this study, measurement uncertainties from microwave radiometers and their impact on temperature profiling are analyzed. These measurement uncertainties include horizontal inhomogeneities of the atmosphere, pointing errors or tilts of the instrument, physical obstacles which are in the line of sight of the radiometer, and radio frequency interferences. Impacts on temperature profiles from these uncertainties are usually small in real-life scenarios and when obstacles are far enough away.
Paulina Grigusova, Annegret Larsen, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, and Jörg Bendix
Biogeosciences, 20, 3367–3394, https://doi.org/10.5194/bg-20-3367-2023, https://doi.org/10.5194/bg-20-3367-2023, 2023
Short summary
Short summary
In our study, we included bioturbation into a soil erosion model and ran the model for several years under two conditions: with and without bioturbation. We validated the model using several sediment fences in the field. We estimated the modeled sediment redistribution and surface runoff and the impact of bioturbation on these along a climate gradient. Lastly, we identified environmental parameters determining the positive or negative impact of bioturbation on sediment redistribution.
Nils Eingrüber, Wolfgang Korres, Ulrich Löhnert, and Karl Schneider
Adv. Sci. Res., 20, 65–71, https://doi.org/10.5194/asr-20-65-2023, https://doi.org/10.5194/asr-20-65-2023, 2023
Short summary
Short summary
Sensitivity analyses for wind direction effects upon an ENVI-met microclimate model were performed for a heterogeneous urban study area. Significant temperature differences were found when forcing the model with constant N/E/S/W wind direction data. Best model performance was observed using measured wind direction forcing data. The results demonstrate that cooling effects of park areas are largely directional which is important for urban planning and design of climate change adaptation measures.
Paulina Grigusova, Annegret Larsen, Sebastian Achilles, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, Kirstin Übernickel, and Jörg Bendix
Earth Surf. Dynam., 10, 1273–1301, https://doi.org/10.5194/esurf-10-1273-2022, https://doi.org/10.5194/esurf-10-1273-2022, 2022
Short summary
Short summary
In our study, we developed, tested, and applied a cost-effective time-of-flight camera to autonomously monitor rainfall-driven and animal-driven sediment redistribution in areas affected by burrowing animals with high temporal (four times a day) and spatial (6 mm) resolution. We estimated the sediment redistribution rates on a burrow scale and then upscaled the redistribution rates to entire hillslopes. Our findings can be implemented into long-term soil erosion models.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
David D. Turner and Ulrich Löhnert
Atmos. Meas. Tech., 14, 3033–3048, https://doi.org/10.5194/amt-14-3033-2021, https://doi.org/10.5194/amt-14-3033-2021, 2021
Short summary
Short summary
Temperature and humidity profiles in the lowest couple of kilometers near the surface are very important for many applications. Passive spectral radiometers are commercially available, and observations from these instruments have been used to get these profiles. However, new active lidar systems are able to measure partial profiles of water vapor. This paper investigates how the derived profiles of water vapor and temperature are improved when the active and passive observations are combined.
Cited articles
Böhm, C., Schween, J., Reyers, M., Maier, B., Löhnert, U., and Crewell,
S.: Towards a climatology of fog frequency in the Atacama Desert via
multi-spectral satellite data and machine learning techniques, J.
Appl. Meteorol. Clim., 60, 1149–1169,
https://doi.org/10.1175/JAMC-D-20-0208.1, 2021. a
Bretherton, C. S., Uttal, T., Fairall, C. W., Yuter, S. E., Weller, R. A.,
Baumgardner, D., Comstock, K., Wood, R., and Raga, G.: The Epic 2001
Stratocumulus Study., B. Am. Meteorol. Soc., 85,
967–978, https://doi.org/10.1175/BAMS-85-7-967, 2004. a, b, c, d
Cereceda, P., Larrain, H., Osses, P., Farías, M., and Egaña, I.: The
spatial and temporal variability of fog and its relation to fog oases in the
Atacama Desert, Chile, Atmos. Res., 87, 312–323,
https://doi.org/10.1016/j.atmosres.2007.11.012, 2008a. a
Cereceda, P., Larrain, H., Osses, P., Farías, M., and Egaña, I.: The
climate of the coast and fog zone in the Tarapacá Region, Atacama Desert,
Chile, Atmos. Res., 32, 1803–1814,
https://doi.org/10.1016/j.atmosres.2007.11.011, 2008b. a
CLU: Cloud profiling product: Classification; 2018-03-26 to 2019-01-23; from Iquique, ACTRIS Data Centre [data set], https://hdl.handle.net/21.12132/2.e224164deb7c40c5, last access: 2 February 2022. a
Crewell, S. and Löhnert, U.: Accuracy of boundary layer temperature
profiles retrieved with multi-frequency, multi-angle microwave radiometry,
IEEE T. Geosci. Remote, 45, 2195–2201,
https://doi.org/10.1109/TGRS.2006.888434, 2007. a, b
del Rio, C., Lobos-Roco, F., Koch, M., García, J.-L., Osses, P., Lambert,
F., Alfaro, F., and Siegmund, A.: Spatial distribution and interannual
variability of coastal fog and low clouds cover in the hyperarid Atacama
Desert and implications for past and present Tillandsia landbeckii
ecosystems, Plant Syst. Evol., 307, 58,
https://doi.org/10.1007/s00606-021-01782-z, 2021a. a, b, c, d
del Rio, C., Lobos-Roco, F., Siegmund, A., Tejos, C., Osses, P., Huaman, Z.,
Meneses, J., and García, J.-L.: GOFOS, ground optical fog observation
system for monitoring the vertical stratocumulus-fog cloud distribution in
the coast of the Atacama Desert, Chile, J. Hydrol., 597, 126190,
https://doi.org/10.1016/j.jhydrol.2021.126190, 2021b. a, b, c
Dunai, T., Melles, M., Quandt, D., Knief, C., and Amelung, W.: Whitepaper:
Earth – Evolution at the dry limit, Global Planet. Change, 193,
103275, https://doi.org/10.1016/j.gloplacha.2020.103275, 2020. a
García, J.-L., Lobos-Roco, F., Schween, J., del Rio, C., Vives, R., Pezoa,
M., Siegmund, A., Latorre, C., Alfaro, F., Koch, M., and Löhnert, U.:
Climate and coastal low-cloud dynamic in the hyperarid Atacama fog Desert
and the geographic distribution of Tillandsia landbeckii (Bromeliaceae)
dune ecosystems, Plant Syst. Evol., 307, 57,
https://doi.org/10.1007/s00606-021-01775-y, 2021. a, b
Illingworth, A. J., Hogan, R. J., O'Connor, E., Bouniol, D., Brooks, M. E.,
Delanoé, J., Donovan, D. P., Eastment, J. D., Gaussiat, N., Goddard, J.
W. F., Haeffelin, M., Klein Baltink, H., Krasnov, O. A., Pelon, J., Piriou,
J.-M., Protat, A., Russchenberg, H. W. J., Seifert, A., Tompkins, A. M., van
Zadelhoff, G.-J., Vinit, F., Willén, U., Wilson, D. R., and Wrench,
C. L.: CLOUDNET Continous evaluation of cloud profiles in seven operational
models using ground-based observations, B. Am.
Meteorol. Soc., 88, 883–898, https://doi.org/10.1175/BAMS-88-6-883, 2007. a
Karstens, U., Simmer, C., and Ruprecht, E.: Remote sensing of cloud liquid
water, Meteorol. Atmos. Phys., 54, 157–171,
https://doi.org/10.1007/BF01030057, 1994. a
Klein, S. and Hartmann, D.: The seasonal cycle of low stratiform clouds, J. Climate,
6, 1587–1606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2, 1993. a
Küchler, N., Kneifel, S., Löhnert, U., Kollias, P., Czekala, H., and
Rose, T.: A W-Band Radar–Radiometer System for Accurate and Continuous
Monitoring of Clouds and Precipitation, J. Atmos. Ocean.
Tech., 34, 2375–2392, https://doi.org/10.1175/JTECH-D-17-0019.1, 2017. a
Lawrence, M.: The relationship between relative humidity and the dewpoint
temperature in moist air: A simple conversion and applications, B. Am. Meteorol. Soc., 86, 225–233,
https://doi.org/10.1175/BAMS-86-2-225, 2005. a
Lilly, D. K.: Models of cloud-topped mixed layers under a strong inversion,
Q. J. Roy. Meteor. Soc., 94, 292–309,
https://doi.org/10.1002/qj.49709440106, 1968. a
Lin, J., Qian, T., and Shinoda, T.: Stratocumulus Clouds in Southeastern
Pacific Simulated by Eight CMIP5–CFMIP Global Climate Models, J.
Climate, 27, 3000–3022, https://doi.org/10.1175/JCLI-D-13-00376.1, 2012. a, b
Lobos-Roco, F., Vilá-Guerau de Arellano, J., and Pedruzo-Bagazgoitia, X.:
Characterizing the influence of the marine stratocumulus cloud on the land
fog at the Atacama Desert, Atmos. Res., 214, 109–120,
https://doi.org/10.1016/j.atmosres.2018.07.009, 2018. a
Löhnert, U. and Crewell, S.: Accuracy of cloud liquid water path from
groundbased microwave radiometry 1. Dependency on cloud model statistics,
Radio Sci., 38, 8041, https://doi.org/10.1029/2002RS002654, 2003. a
Löhnert, U., Turner, D., and Crewell, S.: Ground-based temperature and
humidity profiling using spectral infrared and microwave observations: Part
1. Simulated retrieval performance in clear sky conditions, J. Appl. Meteorol.
Clim., 48, 1017–1032, https://doi.org/10.1175/2008JAMC2060.1, 2009. a
Manninen, A., Marke, T., O'Connor, E., and Tuononen, M.: Atmospheric boundary
layer classification with Doppler lidar, J. Geophys. Res.,
123, 8172–8189, https://doi.org/10.1029/2017JD028169, 2018. a, b
Manrique, R.: El Niño Southern Oscillation And Its Effect On Fog Oases
Along The Peruvian And Chilean Coastal Deserts, PhD thesis, Universita di
Bologna,
http://amsdottorato.unibo.it/3436/1/Manrique_Rosa_tesi.pdf (last access: 22 February 2022),
2011. a
Martucci, G., Milroy, C., and O'Dowd, C. D.: Detection of Cloud-Base Height
Using Jenoptik CHM15K and Vaisala CL31 Ceilometers, J. Atmos.
Ocean. Tech., 27, 305–318, https://doi.org/10.1175/2009JTECHA1326.1, 2010. a, b
Mechoso, C. R., Wood, R., Weller, R., Bretherton, C., Clarke, A. D., Coe, H.,
Fairall, C., Farrar, J. T., Feingold, G., Garreaud, R., Grados, C.,
McWilliams, J., de Szoeke, S. P., Yuter, S. E., and Zuidema, P.:
Ocean–Cloud–Atmosphere–Land Interactions In The Southeastern Pacific,
The Vocals Program, B. Am. Meteorol. Soc., 95,
357–375, https://doi.org/10.1175/BAMS-D-11-00246.1, 2014. a, b
Muñoz, R., Zamora, R. A., and Rutllant, J. A.: The Coastal Boundary Layer
at the Eastern Margin of the Southeast Pacific (23.48∘ S, 70.48∘ W): Cloudiness-Conditioned Climatology, J. Climate, 24, 1013–1033,
https://doi.org/10.1175/2010JCLI3714.1, 2011. a
Muñoz, R. C. and Garreaud, R. D.: Dynamics of the Low-Level Jet off the
West Coast of Subtropical South America, Mon. Weather Rev., 133,
3661–3677, https://doi.org/10.1175/MWR3074.1, 2005. a
Muñoz-Schick, M., Pinto, R., Mesa, A., and Moreira-Muñoz, A.: Fog oases
during the El Niño Southern Oscillation 1997–1998, in the coastal hills
south of Iquique, Tarapacá region, Chile, Revist Chilena de Historia
Natural, 74, 389–405, https://doi.org/10.4067/S0716-078X2001000200014, 2001. a
Naval Oceanographic Office: K10 Global 10 km Analyzed SST data set. Ver. 1.0., Physical Oceanography Distributed Active Archive center (PO.DAAC) CA, USA [data set],
https://doi.org/10.5067/GHK10-41N01, 2008. a, b, c, d
Naval Oceanographic Office: GHRSST L4 NAVO K10 Global 1m-depth Analyzed SST dataset. Ver. 1.0., Physical Oceanography Distributed Active Archive center (PO.DAAC) CA, USA [data set],
https://doi.org/10.5067/GHK10-L4N01, 2018. a, b, c
NOAA Climate Prediction Center: ENSO ONI index,
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php,
last access: 2 February 2022. a
Ouwersloot, H. and Vila-Guerau de Arellano, J.: Analytical Solution for the
Convectively-Mixed Atmospheric Boundary Layer, Bound.-Lay. Meteorol.,
148, 557–583, https://doi.org/10.1007/s10546-013-9816-z, 2013. a
Päschke, E., Leinweber, R., and Lehmann, V.: An assessment of the performance of a 1.5 µm Doppler lidar for operational vertical wind profiling based on a 1-year trial, Atmos. Meas. Tech., 8, 2251–2266, https://doi.org/10.5194/amt-8-2251-2015, 2015. a
Romps, D.: Exact Expression for the Lifting Condensation Level, J.
Atmos. Sci., 74, 3891–3900, https://doi.org/10.1175/JAS-D-17-0102.1, 2017. a
Rose, T., Crewell, S., Löhnert, U., and Simmer, C.: A network suitable
microwave radiometer for operational monitoring of the cloudy atmosphere,
Atmos. Res., 75, 183–200, https://doi.org/10.1016/j.atmosres.2004.12.005, 2005. a
Rutllant, J., Fuenzalida, H., and Aceituno, P.: Climate dynamics along the arid
northern coast of Chile: The 1997–1998 Dinámica del Clima de la Región
de Antofagasta (DICLIMA) experiment, J. Geophys. Res., 108,
4538, https://doi.org/10.1029/2002JD003357, 2003. a
Schneider, T., Kaul, C., and Pressel, K.: Possible climate transitions from
breakup of stratocumulus decks under greenhouse warming, Nat. Geosci.,
12, 163–167, https://doi.org/10.1038/s41561-019-0310-1, 2019. a
Schubert, W., Wakefield, J., Steiner, E., and Cox, S.: Marine Stratocumulus
Convection. Part I: Governing Equations and Horizontally Homogeneous
Solutions, J. Atmos. Sci., 36, 1286–1307,
https://doi.org/10.1175/1520-0469(1979)036<1286:MSCPIG>2.0.CO;2, 1979. a, b
Schulz, N., Boisier, J. P., and Aceituno, P.: Climate change along the coast of
northern Chile, Int. J. Climatatol., 36, 1308–1324,
https://doi.org/10.1175/1520-0469(1979)036<1308:MSCPIH>2.0.CO;2, 2012. a, b, c
Schween, J., Hoffmeister, D., and Löhnert, U.: Filling the Observational
Gap in the Atacama Desert with a new Network of Climate Stations, Global
Planet. Change, 184, 103034, https://doi.org/10.1016/j.gloplacha.2019.103034, 2020. a, b, c
Schween, J. H. and Loehnert, U.: Meteorological Data March 2018–March 2019 from Iquique, CRC1211 Database (CRC1211DB) [data set], https://doi.org/10.5880/CRC1211DB.45, 2022a. a
Schween, J. H. and Loehnert, U.: Wind profiles March 2018–March 2019 from remote sensing at Iquique, CRC1211 Database (CRC1211DB) [data set], https://doi.org/10.5880/CRC1211DB.53, 2022b. a
Schween, J. H., Hirsikko, A., Löhnert, U., and Crewell, S.: Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment, Atmos. Meas. Tech., 7, 3685–3704, https://doi.org/10.5194/amt-7-3685-2014, 2014. a, b
Schween, J. H., Loehnert, U., and Westbrook, S.: Temperature profiles March 2018–March 2019 from remote sensing at Iquique, CRC1211 Database (CRC1211DB) [data set], https://doi.org/10.5880/CRC1211DB.46, 2022a. a
Schween, J. H., Loehnert, U., and Westbrook, S.: Liquid water path (LWP TH80) March 2018–March 2019 at Iquique, CRC1211 Database (CRC1211DB) [data set], https://doi.org/10.5880/CRC1211DB.49, 2022b. a
Schween, J. H., Loehnert, U., and Westbrook, S.: Liquid water path (LWP TH85) March 2018–March 2019 at Iquique, CRC1211 Database (CRC1211DB) [data set], https://doi.org/10.5880/CRC1211DB.50, 2022c. a
Schween, J. H., Loehnert, U., and Westbrook, S.: Liquid water path (LWP TH90) March 2018–March 2019 at Iquique, CRC1211 Database (CRC1211DB) [data set], https://doi.org/10.5880/CRC1211DB.51, 2022d. a
Schween, J. H., Loehnert, U., and Westbrook, S.: Liquid water path (LWP TH95) March 2018–March 2019 at Iquique, CRC1211 Database (CRC1211DB) [data set], https://doi.org/10.5880/CRC1211DB.52, 2022e. a
Schween, J. H., Loehnert, U., and Westbrook, S.: Integrated water vapor (IWV TH85) March 2018–March 2019 at Iquique, CRC1211 Database (CRC1211DB) [data set], https://doi.org/10.5880/CRC1211DB.43, 2022f. a
Schween, J. H., Marke, T., and Loehnert, U.: Boundary layer classification from remote sensing at Iquique, March 2018–March 2019,
CRC1211 Database (CRC1211DB) [data set], https://doi.org/10.5880/CRC1211DB.54, 2022g. a
Serpetzoglou, E., Albrecht, B., Kollias, P., and Fairall, C.: Boundary Layer,
Cloud, and Drizzle Variability in the Southeast Pacific Stratocumulus Regime,
J. Climate, 21, 6191–6214, https://doi.org/10.1175/2008JCLI2186.1, 2008. a
Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist, B.,
Brenguier, J.-L., Bretherton, C. S., Burnet, F., Campos, T., Chai, S.,
Faloona, I., Friesen, D., Haimov, S., Laursen, K., Lilly, D. K., Loehrer,
S. M., Malinowski, S. P., Morley, B., Petters, M. D., Rogers, D. C., Russell,
L., Savic-Jovcic, V., Snider, J. R., Straub, D., Marcin, D., Szumowski, J.,
Takagi, H., Thornton, D. C., Tschudi, M., Twohy, C., Wetzel, M., and
Van Zanten, M. C.: Dynamics and Chemistry of Marine Stratocumulus –
DYCOMS-II, B. Am. Meteorol. Soc., 84, 579–593,
https://journals.ametsoc.org/view/journals/bams/84/5/bams-84-5-579.xml (last access: 5 September 2022), 2003. a, b
Stevens, B., Moeng, C., Ackerman, A. S., Bretherton, C. S., Chlond, A.,
de Roode, S., Edwards, J., Golaz, J., Jiang, H., Khairoutdinov, M.,
Kirkpatrick, M. P., Lewellen, M. P., Lock, A., Müller, F., Stevens,
M. P., Whelan, E., and Zhu, P.: Evaluation of Large-Eddy Simulations via
Observations of Nocturnal Marine Stratocumulus, Mon. Weather Rev., 133,
1443–1462, https://doi.org/10.1175/MWR2930.1, 2005. a
Tuononen, M., O'Connor, E. J., and Sinclair, V. A.: Evaluating solar radiation forecast uncertainty, Atmos. Chem. Phys., 19, 1985–2000, https://doi.org/10.5194/acp-19-1985-2019, 2019. a, b
Turton, J. D. and Nicholls, S.: A study of the diurnal variation of
stratocumulus using a multiple mixed layer model, Q. J.
Roy. Meteor. Soc., 113, 969–1009, https://doi.org/10.1002/qj.49711347712,
1987. a
Wood, R., Mechoso, C. R., Bretherton, C. S., Weller, R. A., Huebert, B., Straneo, F., Albrecht, B. A., Coe, H., Allen, G., Vaughan, G., Daum, P., Fairall, C., Chand, D., Gallardo Klenner, L., Garreaud, R., Grados, C., Covert, D. S., Bates, T. S., Krejci, R., Russell, L. M., de Szoeke, S., Brewer, A., Yuter, S. E., Springston, S. R., Chaigneau, A., Toniazzo, T., Minnis, P., Palikonda, R., Abel, S. J., Brown, W. O. J., Williams, S., Fochesatto, J., Brioude, J., and Bower, K. N.: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations, Atmos. Chem. Phys., 11, 627–654, https://doi.org/10.5194/acp-11-627-2011, 2011. a
Zhou, X., Kollias, P., and Lewis, E. R.: Clouds, Precipitation, and Marine
Boundary Layer Structure during the MAGIC Field Campaign, J. Climate,
28, 2420–2442, https://doi.org/10.1175/JCLI-D-14-00320.1, 2015. a
Short summary
Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's climate. These clouds form the major source of water to parts of the extreme dry Atacama Desert at the northern coast of Chile. For the first time these clouds are observed over a whole year with three remote sensing instruments. It is shown how these clouds are influenced by the land–sea wind system and the distribution of ocean temperatures.
Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's...
Altmetrics
Final-revised paper
Preprint