Articles | Volume 22, issue 16
https://doi.org/10.5194/acp-22-10567-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-10567-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variations and sources of volatile organic compounds (VOCs) in urban region: insights from measurements on a tall tower
Xiao-Bing Li
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Sihang Wang
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Chunlin Wang
Guangzhou Climate and Agrometeorology Center, Guangzhou 511430,
China
Southern Marine Science and Engineering Guangdong Laboratory
(Zhuhai), Zhuhai 519082, China
Jing Lan
Guangzhou Climate and Agrometeorology Center, Guangzhou 511430,
China
Southern Marine Science and Engineering Guangdong Laboratory
(Zhuhai), Zhuhai 519082, China
Zhijie Liu
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Yongxin Song
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Xianjun He
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Yibo Huangfu
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Chenglei Pei
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Guangzhou Ecological and Environmental Monitoring Center of
Guangdong Province, Guangzhou 510060, China
Peng Cheng
Institute of Mass Spectrometer and Atmospheric Environment, Jinan
University, Guangzhou 510632, Guangdong, China
Suxia Yang
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Jipeng Qi
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Caihong Wu
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Shan Huang
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Yingchang You
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Ming Chang
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Huadan Zheng
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and
Communications, and Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
Wenda Yang
Institute of Mass Spectrometer and Atmospheric Environment, Jinan
University, Guangzhou 510632, Guangdong, China
Xuemei Wang
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Min Shao
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative
Innovation for Environmental Quality, Guangzhou 511443, China
Viewed
Total article views: 4,529 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Mar 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,411 | 1,043 | 75 | 4,529 | 427 | 51 | 116 |
- HTML: 3,411
- PDF: 1,043
- XML: 75
- Total: 4,529
- Supplement: 427
- BibTeX: 51
- EndNote: 116
Total article views: 3,651 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Aug 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,881 | 710 | 60 | 3,651 | 245 | 40 | 93 |
- HTML: 2,881
- PDF: 710
- XML: 60
- Total: 3,651
- Supplement: 245
- BibTeX: 40
- EndNote: 93
Total article views: 878 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Mar 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
530 | 333 | 15 | 878 | 182 | 11 | 23 |
- HTML: 530
- PDF: 333
- XML: 15
- Total: 878
- Supplement: 182
- BibTeX: 11
- EndNote: 23
Viewed (geographical distribution)
Total article views: 4,529 (including HTML, PDF, and XML)
Thereof 4,803 with geography defined
and -274 with unknown origin.
Total article views: 3,651 (including HTML, PDF, and XML)
Thereof 3,742 with geography defined
and -91 with unknown origin.
Total article views: 878 (including HTML, PDF, and XML)
Thereof 1,061 with geography defined
and -183 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
27 citations as recorded by crossref.
- Development of a UAV-borne sorbent tube sampler and its application on the vertical profile measurement of volatile organic compounds H. Zhai et al. 10.1016/j.jes.2024.04.016
- Modeling Secondary Organic Aerosols in China: State of the Art and Perspectives J. Li et al. 10.1007/s40726-022-00246-3
- Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany J. Song et al. 10.5194/acp-24-6699-2024
- Assessment of long tubing in measuring atmospheric trace gases: applications on tall towers X. Li et al. 10.1039/D2EA00110A
- Nighttime ozone in the lower boundary layer: insights from 3-year tower-based measurements in South China and regional air quality modeling G. He et al. 10.5194/acp-23-13107-2023
- Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China J. Zhou et al. 10.5194/acp-24-9805-2024
- Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements Q. Yang et al. 10.5194/acp-24-6865-2024
- Influence of anthropogenic emissions on the composition of highly oxygenated organic molecules in Helsinki: a street canyon and urban background station comparison M. Okuljar et al. 10.5194/acp-23-12965-2023
- Origin and transformation of volatile organic compounds at a regional background site in Hong Kong: Varied photochemical processes from different source regions Q. Yuan et al. 10.1016/j.scitotenv.2023.168316
- Observationally constrained modelling of NO3 radical in different altitudes: Implication to vertically resolved nocturnal chemistry Z. Sun et al. 10.1016/j.atmosres.2023.106674
- Characteristics of Nocturnal Boundary Layer over a Subtropical Forest: Implications for the Dispersion and Fate of Atmospheric Species S. Jiang et al. 10.1021/acs.est.4c05051
- Significance of Volatile Organic Compounds to Secondary Pollution Formation and Health Risks Observed during a Summer Campaign in an Industrial Urban Area L. Cao et al. 10.3390/toxics12010034
- The Vertical Distribution of VOCs and Their Impact on the Environment: A Review D. Chen et al. 10.3390/atmos13121940
- Quantitative evidence from VOCs source apportionment reveals O3 control strategies in northern and southern China Z. Wang et al. 10.1016/j.envint.2023.107786
- A novel method for spatial allocation of volatile chemical products emissions: A case study of the Pearl River Delta Z. Cai et al. 10.1016/j.atmosenv.2023.120119
- Sources of Wintertime Atmospheric Organic Pollutants in a Large Canadian City: Insights from Particle and Gas Phase Measurements L. Rivellini et al. 10.1021/acsestair.4c00039
- Nocturnal downward transport of NO3 radical from the residual layer to a surface site by the mountain breeze in Seoul, South Korea C. Yun et al. 10.1016/j.atmosenv.2024.120345
- Wintertime fine aerosol particles composition and its evolution in two megacities of southern and northern China Y. Cheng et al. 10.1016/j.scitotenv.2023.169778
- Rising frequency of ozone-favorable synoptic weather patterns contributes to 2015–2022 ozone increase in Guangzhou N. Liu et al. 10.1016/j.jes.2023.09.024
- Characterization of organic vapors by a Vocus proton-transfer-reaction mass spectrometry at a mountain site in southeastern China Y. Zhang et al. 10.1016/j.scitotenv.2024.170633
- Vertical ozone formation mechanisms resulting from increased oxidation on the mountainside of Mount Tai, China W. Wu et al. 10.1093/pnasnexus/pgae347
- Pollution characteristics, source appointment and environmental effect of oxygenated volatile organic compounds in Guangdong-Hong Kong-Macao Greater Bay Area: Implication for air quality management G. Liu et al. 10.1016/j.scitotenv.2024.170836
- The important contribution of secondary formation and biomass burning to oxidized organic nitrogen (OON) in a polluted urban area: insights from in situ measurements of a chemical ionization mass spectrometer (CIMS) Y. Cai et al. 10.5194/acp-23-8855-2023
- Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China S. Wang et al. 10.5194/acp-24-7101-2024
- Observational Evidence of the Vertical Exchange of Ozone within the Urban Planetary Boundary Layer in Shanghai, China Y. Gu et al. 10.3390/atmos15030248
- Elucidating key factors in regulating budgets of ozone and its precursors in atmospheric boundary layer X. Song et al. 10.1038/s41612-024-00818-8
- Synergistic reduction of air pollutants and carbon dioxide emissions in Shanxi Province, China from 2013 to 2020 L. Wu et al. 10.1016/j.scitotenv.2024.175342
27 citations as recorded by crossref.
- Development of a UAV-borne sorbent tube sampler and its application on the vertical profile measurement of volatile organic compounds H. Zhai et al. 10.1016/j.jes.2024.04.016
- Modeling Secondary Organic Aerosols in China: State of the Art and Perspectives J. Li et al. 10.1007/s40726-022-00246-3
- Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany J. Song et al. 10.5194/acp-24-6699-2024
- Assessment of long tubing in measuring atmospheric trace gases: applications on tall towers X. Li et al. 10.1039/D2EA00110A
- Nighttime ozone in the lower boundary layer: insights from 3-year tower-based measurements in South China and regional air quality modeling G. He et al. 10.5194/acp-23-13107-2023
- Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China J. Zhou et al. 10.5194/acp-24-9805-2024
- Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements Q. Yang et al. 10.5194/acp-24-6865-2024
- Influence of anthropogenic emissions on the composition of highly oxygenated organic molecules in Helsinki: a street canyon and urban background station comparison M. Okuljar et al. 10.5194/acp-23-12965-2023
- Origin and transformation of volatile organic compounds at a regional background site in Hong Kong: Varied photochemical processes from different source regions Q. Yuan et al. 10.1016/j.scitotenv.2023.168316
- Observationally constrained modelling of NO3 radical in different altitudes: Implication to vertically resolved nocturnal chemistry Z. Sun et al. 10.1016/j.atmosres.2023.106674
- Characteristics of Nocturnal Boundary Layer over a Subtropical Forest: Implications for the Dispersion and Fate of Atmospheric Species S. Jiang et al. 10.1021/acs.est.4c05051
- Significance of Volatile Organic Compounds to Secondary Pollution Formation and Health Risks Observed during a Summer Campaign in an Industrial Urban Area L. Cao et al. 10.3390/toxics12010034
- The Vertical Distribution of VOCs and Their Impact on the Environment: A Review D. Chen et al. 10.3390/atmos13121940
- Quantitative evidence from VOCs source apportionment reveals O3 control strategies in northern and southern China Z. Wang et al. 10.1016/j.envint.2023.107786
- A novel method for spatial allocation of volatile chemical products emissions: A case study of the Pearl River Delta Z. Cai et al. 10.1016/j.atmosenv.2023.120119
- Sources of Wintertime Atmospheric Organic Pollutants in a Large Canadian City: Insights from Particle and Gas Phase Measurements L. Rivellini et al. 10.1021/acsestair.4c00039
- Nocturnal downward transport of NO3 radical from the residual layer to a surface site by the mountain breeze in Seoul, South Korea C. Yun et al. 10.1016/j.atmosenv.2024.120345
- Wintertime fine aerosol particles composition and its evolution in two megacities of southern and northern China Y. Cheng et al. 10.1016/j.scitotenv.2023.169778
- Rising frequency of ozone-favorable synoptic weather patterns contributes to 2015–2022 ozone increase in Guangzhou N. Liu et al. 10.1016/j.jes.2023.09.024
- Characterization of organic vapors by a Vocus proton-transfer-reaction mass spectrometry at a mountain site in southeastern China Y. Zhang et al. 10.1016/j.scitotenv.2024.170633
- Vertical ozone formation mechanisms resulting from increased oxidation on the mountainside of Mount Tai, China W. Wu et al. 10.1093/pnasnexus/pgae347
- Pollution characteristics, source appointment and environmental effect of oxygenated volatile organic compounds in Guangdong-Hong Kong-Macao Greater Bay Area: Implication for air quality management G. Liu et al. 10.1016/j.scitotenv.2024.170836
- The important contribution of secondary formation and biomass burning to oxidized organic nitrogen (OON) in a polluted urban area: insights from in situ measurements of a chemical ionization mass spectrometer (CIMS) Y. Cai et al. 10.5194/acp-23-8855-2023
- Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China S. Wang et al. 10.5194/acp-24-7101-2024
- Observational Evidence of the Vertical Exchange of Ozone within the Urban Planetary Boundary Layer in Shanghai, China Y. Gu et al. 10.3390/atmos15030248
- Elucidating key factors in regulating budgets of ozone and its precursors in atmospheric boundary layer X. Song et al. 10.1038/s41612-024-00818-8
- Synergistic reduction of air pollutants and carbon dioxide emissions in Shanxi Province, China from 2013 to 2020 L. Wu et al. 10.1016/j.scitotenv.2024.175342
Latest update: 02 Nov 2024
Short summary
High-time-resolution measurements of volatile organic compounds (VOCs) were made using an online mass spectrometer at a 600 m tall tower in urban region. Compositions, temporal variations, and sources of VOCs were quantitatively investigated in this study. We find that VOC measurements in urban regions aloft could better characterize source characteristics of anthropogenic emissions. Our results could provide important implications in making future strategies for control of VOCs.
High-time-resolution measurements of volatile organic compounds (VOCs) were made using an online...
Altmetrics
Final-revised paper
Preprint