

Supplement of

Variations and sources of volatile organic compounds (VOCs) in urban region: insights from measurements on a tall tower

Xiao-Bing Li et al.

Correspondence to: Bin Yuan (byuan@jnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

	Chemical	Suggested	Average mixing	LOD**	Sensitivity
m/z	Formula	Compounds [@]	ratio (nntv)	(nnty)	(cns/nnh)
26.015	CoHo	alkyl frag	8 3	<u>(pptv)</u> 4.2	(cps/ppb) 686.8
20.015	$C_2 \Pi_2$	aikyi ilag	0.5	4.2	080.8
27.023	C_2H_3	frag	7.4	4.9	705.3
28.031	C_2H_4	alkyl frag	6.0	5.2	723.5
31.018	CH ₂ OH ^{##}	Formaldehyde*	4532.4	12.9	298.1
33.033	CH4OH##	Methanol*	8680.0	22.4	466.6
41.039	C ₃ H ₅ ^{##}	aromatic frag, propyne, methylcyclopent	112.1	9.6	937.1
		ane frag, MBO frag			
42.034	$C_2H_3NH^{##}$	Acetonitrile*	191.8	2.6	1261.6
42.046	C_3H_6	cyclopentane frag	5.5	1.7	952.0
43.018	C ₂ H ₂ OH	oxygenate frag, ketene	755.6	7.8	1357.3
43.054	C ₃ H ₆ H	alkyl frag, propene, propanol	413.1	6.3	966.8
44.049	C ₂ H ₅ NH ^{##}	etheneamine	3.5	2.4	1230.1
45.033	$C_2H_4OH^{\#\#}$	Acetaldehyde*	2535.8	10.0	1356.3
46.029	CH ₃ NOH ^{##}	formamide [#]	24.4	3.6	1218.1
47.013	CH2O2H##	formic acid [#]	749.5	40.8	331.2
47.049	C2H6OH##	Ethanol*	15824.2	113.7	197.7
48.044	CH5NOH	hydroxy methyl amine	1.3	0.6	2179.2
49.028	CH ₄ O ₂ H	formaldehyde water cluster	6.7	2.1	1435.3
49.011	$\rm CH_4SH$	methane thiol	4.3	1.2	1381.9
51.044	$\mathrm{CH}_{6}\mathrm{O}_{2}\mathrm{H}$	methanol water cluster	1792.2	7.1	1462.6
51.023	C ₄ H ₂ H	aromatic frag, butadiyne	5.0	3.4	1077.6
51.995	ClH ₂ NH	monochloramin e	1.9	1.0	1706.6
53.039	C ₄ H ₄ H	Isoprene frag, alkyl frag, butenyne	4.4	2.1	1103.6

28 Table S1. Average mixing ratio, limits of detection (LOD), and instrument sensitivity

for the VOC species reported in this study.

54.034	C ₃ H ₃ NH ^{##}	acrylonitrile	4.6	0.5	2758.4
57.033	C ₃ H ₄ OH ^{##}	Acrolein*	192.2	13.2	1691.7
57.070	C4H9	butenes, alkyl frag, butanol methyl	798.2	1.0	1204.8
58.029	C ₂ H ₃ NOH ^{##}	isocyanate, hydroxy acetonitrile	6.0	0.8	2103.9
59.049	C3H6OH##	Acetone*	4386.8	6.7	1755.1
60.044	C ₂ H ₅ NOH ^{##}	acetamide [#]	42.1	2.9	1693.6
61.028	$C_{2}H_{4}O_{2}H^{\#}$	Acetic acid [#]	4792.9	34.8	661.5
62.024	CH ₃ NO ₂ H ^{##}	nitromethane	10.2	1.3	2520.9
63.044	C ₂ H ₆ O ₂ H ^{##}	ethane diols, acetaldehyde water cluster, ethyl hydroperoxide,	366.1	5.1	1522.0
65.023	CH ₄ O ₃ H	formic acid water cluster	57.7	3.5	1804.9
65.060	$C_2H_8O_2H$	ethanol water cluster	1246.2	34.8	1605.2
67.039	CH ₇ O ₃	methane diol water cluster	2.1	0.7	1821.4
67.054	C5H6H##	cyclopentadiene, monoterpene frag	11.3	2.1	1267.6
68.049	C4H5NH##	pyrrole [#]	4.3	1.3	1205.7
68.062	C ₅ H ₈	alkyl frag	4.7	1.4	1278.2
69.055	CH ₈ O ₃ H	methanol +2 water cluster	26.9	1.4	1836.9
69.033	C4H4OH##	Furan*	30.5	3.6	1194.0
69.070	$C_5H_8H^{\#\#}$	Isoprene*	293.7	4.5	1068.7
70.065	C4H7NH##	butane nitrile	11.6	1.0	2756.5
71.049	C ₄ H ₆ OH ^{##}	Methy Vinyl Ketone*, MACR	316.5	3.7	1919.5
71.086	C5H10H	pentenes, alkyl frag, C2 and C3 cyclhexanes	271.6	3.9	1308.1
72.044	C ₃ H ₅ NOH	ethyl isocyanate, Methoxyacetoni trile, acrylamide	4.8	0.9	3113.7
72.057	C_4H_8O	C4 carbonyl	11.8	1.3	1552.1

		O_2 + product			
73.028	$C_{3}H_{4}O_{2}H^{\#\#}$	methyl glyoxal,	57.7	2.4	1713.7
		acrylic acid			
73.065	C4H2OH##	2- Butanone/Methy	1183.9	94	1938 2
75.005	04118011	1 Ethyl Ketone*	1105.7	7.4	1750.2
		pentanes (esp			
73.101	$C_5H_{12}H$	isopentane)	13.3	1.5	1329.2
74.060	C ₃ H ₇ NOH ^{##}	C3 amides	177.2	2.1	2708.0
		Hydroxyacetone			
		*, propionic			
75.044	$C_{3}H_{6}O_{2}H^{\#\#}$	acid, methyl	2288.1	14.6	1234.8
		acetate, ethyl			
		formate			
		butanols,			
75.080	$C_4H_{10}OH$	monoterpene	23.4	2.0	1569.0
,0.000	04110011	oxidation	2011	2.0	100510
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	product			
76.039	$C_2H_5NO_2H^{***}$	nitroethane	7.4	1.4	2439.2
		hydroxy or			
77 022	СЦОЦ	peroxyacetic	1497	2.0	1072.0
//.025	С2П4О3П	indicator)	148.7	2.9	1972.0
		alveolic acid			
		acetone water			
		cluster. C3			
77.060	$C_{3}H_{8}O_{2}H^{\#\#}$	hvdroperoxide.	200.4	3.0	1678.6
		propane diols			
77.039	C_6H_5	aromatic frag	3.7	1.5	1367.5
78 046	СЧ	benzene charge	00	1.2	1276.9
/ 0.040	$C_6\Pi_6$	transfer	0.0	1.2	1370.8
79.039	C ₂ H ₂ O ₂ H	acetic acid water	277.2	5.8	1901.2
19.059	021160311	cluster	211.2	5.0	1701.2
79.075	$C_3H_{10}O_2H$	propanol water	24.6	1.1	1688.0
		cluster		- <i>i</i>	
79.054	$C_6H_6H^{##}$	Benzene*	384.7	3.4	1235.1
80.034	CH5NO3H	trihydroxy	10.0	2.1	1394.9
		methyl amine			
80.990	C_2H_2FClH	chlorofluoroethe	23.4	1.0	1403.8
		ethane dial			
81.055	$C_2H_8O_3H$	water cluster	12.1	1.7	1911.7
		cvclopentadiene			
81.033	C5H4OH##	ketone	4.5	2.1	2483.4

		monoterpene			
81.070	C_6H_8H	frag,	97.6	2.7	1403.9
		decahydronapht			
		halene frag			
83.013	$C_4H_2O_2H$	C4 2-0Xy 4-	5.0	1.3	1752.0
		DDE methyl furan			
83 049	C-H-OH##	cyclopentenone	36.8	2.5	1379 5
05.017	03110011	pent-2-vnal	50.0	2.5	1579.5
		hexadienes.			
		methylcyclopent			
		ane,			
		cyclohexene,			
83.086	$C_6H_{10}H^{\#\#}$	alkene or	185.3	3.4	1421.4
		cycloalkane			
		frag, hexenol			
		and hexanal			
		indicator			
84.081	C5H9NH##	C5 nitrile	4.4	0.9	2998.6
84.938	CrO ₂ H	chromium	7.0	1.4	1709.9
		(stainless steel)			
85.028	$C_4H_4O_2H^{\#\#}$	furanone,	24.6	3.9	1889.3
		nydroxy furan			
		C3 ketones,			
		2ethylacrolein			
85 065	C5H0OH##	dihydromethylfu	52.0	24	2352 7
05.005	0,11,011	ran.	52.0	2.1	2352.1
		dihydropyran,			
		MBO NO+			
		methylcyclopent			
85.101	$C_{6}H_{12}H^{\#\#}$	ane, pentenes,	140.0	2.9	1438.4
		cyclohexane			
		frag, butadione,			
		methyl acrylate,			
87.044	$C_4H_6O_2H^{\#\#}$	vinyl acetate,	210.3	4.5	1717.0
		dihydrodioxin,			
07 000		butyrolactone	100 7	2.7	1007.0
87.080	$C_5H_{10}OH^{\prime\prime\prime\prime}$	2-Pentanone*	102.7	2.7	1997.9
		acetone NU+			
88.039	$C_3H_6NO_2$	nitropropenes	20.0	1.2	2791.9
		oxazolidone			
88.076	C ₄ H ₉ NOH	C2 acetamides.	54.1	1.4	2791.9
	-	,			

		C4 amides,			
		morpholine			
		oxo propanoic			
		(pyruvic) acid,			
89.023	$C_{3}H_{4}O_{3}H^{\#\#}$	acetic-formic	5.7	3.5	1946.3
		acid anhydride,			
		APAN indicator			
		ethyl acetate,			
		butryic acid,			
89.060	$C_4H_8O_2H^{\#\#}$	hydroxy	2773.7	6.6	1059.3
		butanone,			
		acetoin			
89.096	$C_5H_{12}OH^{\#\#}$	pentanols	14.5	1.0	1679.4
		hydroxy or			
01.020		peroxypropanoi	215.0	4.0	2020 7
91.039	$C_3H_6O_3H^{mn}$	c acid, PPN	315.8	4.9	2030.7
		indicator			
		butane diols, C4			
91.075	$C_4 H_{10} O_2 H^{\#\!\#}$	carbonyl water	60.3	1.5	2171.6
		cluster			
91.054	C_7H_6H	aromatic frag	155.1	4.3	1486.6
92.062	C7H8	toluene charge	62.9	1.7	1494.2
	- /0	transfer			,
93.055	C3H8O3H	propanoic acid	104.8	6.6	1959.7
	5 0 5	water cluster			
93.091	$C_4H_{12}O_2H$	C4 alcohol	67.8	1.2	1738.2
		water cluster			
93.033	C ₆ H ₄ OH	ethyne furan	273.2	14.3	1663.4
93.070	$C_7H_8H_{\#\#}$	Toluene*	1483.6	1.2	1539.0
95.049	$C_6H_6OH_{\#\#}$	Phenol*	20.6	3.9	1513.1
		decahydronapht			
95.086	C7H10H##	halene frag,	28.7	2.1	1516.6
	- /10///	monoterpene			
		frag			
96 961	C2H2Cl2H	dichloroethene	25.0	13	1531.0
200201	0211201211	(uncertain ID)	2010	110	100110
		dimethyl or			
		ethyl furan,			
97.065	C-H-OH##	hexadienal,	25.7	24	1465.8
77.005	06118011	methylcyclopent	23.1	2.7	1405.0
		enone,			
		cyclohexeneone			
07 101	С-НЦ##	methylcyclohex	863	27	1531.0
97.101	U/II12f1	ane frag, urban	00.5	2.1	1331.0

		OA,			
		monoterpene			
		frag,			
		methylcyclohex			
		ene			
		C6 carbonyl			
98.073	$C_6H_{10}O$	+1DBE O ₂ +	4.2	1.2	1687.0
		product			
		C4 3-oxy			
99.008	$C_4H_2O_3H$	4DBE: maleic	17.1	3.2	2049.5
		anhydride			
		methyl			
99.044	$C_5H_6O_2H^{\#\#}$	furanone,	32.4	3.7	2955.8
		methanol furan			
		hexenones,			
00.090		methylcyclopent	200.0	2.1	2287.0
99.080	С6П10ОП	anone,	209.9	2.1	2587.0
		cyclohexanone			
		methylcyclohex			
		ane,			
99.117	$C_7H_{14}H$	dimethylcyclope	25.1	1.8	1513.5
		ntane, alkanes			
		frag			
100 030	C.H.NO.H	$MVK NO^+$	5 2	1.5	2660.0
100.039	C41151NO211	product	5.5	1.5	2009.9
		C5 alkene			
100 076	C-H-NOH	amide, butyl	74	1 4	2830 8
100.070	CSHIJIVOIT	isocyanate, C5	7.4	1.7	2057.0
		hydroxy nitrile			
101.023	$C_4H_4O_3H^{\#\#}$	C4 3-oxy 3DBE	26.9	4.3	2052.8
		methyl			
		methacrylate,			
		pentanedione,			
101.060	$C_5H_8O_2H^{\#\#}$	propenyl ester	201.9	5.2	1675.8
		acetic acid,			
		acetylacetone,et			
		hyl acrylate			
101.096	C6H12OH##	Methyl Isobutyl	116.6	2.6	1995.6
1011090	01112011	Ketone*	110.0	2.0	177010
102.019	C3H3NO3H	oxazolidine	3.0	1.5	1565.3
		dione			
		C4 ketones NO ⁺			
102.055	$C_4H_8NO_2$	product, nitro	6.3	0.9	2770.7
		C4 alkenes			

102.091	C ₅ H ₁₁ NOH	C5 amides	6.9	0.9	2845.8
103.039	$C_4H_6O_3H^{\#\#}$	anhydride, MPAN and CPAN indicator	34.7	3.2	2247.4
103.075	$C_5H_{10}O_2H^{\#\#}$	pentanoic acids, methyl butanonate,prop yl acetate budrovu or	105.4	2.2	1659.9
105.055	C ₄ H ₈ O ₃ H	peroxy butanoic acid (from PiBN or PnBN), various acetic acid ethoxy and methoxy esters	37.9	2.0	2058.0
105.091	$C_5H_{12}O_2H$	pentane diols, C5 carbonyl water cluster	12.8	1.5	1817.4
105.033	C ₇ H ₄ OH	C7 1-oxy 6- DBE	24.8	2.2	1741.1
105.070	$C_8 H_8 H^{\#\#}$	Styrene*	136.6	2.5	1875.6
106.078	C_8H_{10}	C8 aromatics charge transfer	56.6	1.0	1591.0
107.034	$C_3H_6O_4H$	C3 4-oxy 1- DBE	5.2	1.6	2084.1
107.070	$C_4H_{10}O_3H$	C4 acid water cluster	25.5	2.2	1990.2
107.107	$C_5H_{14}O_2H$	C5 alcohol water cluster	51.3	1.2	1787.4
107.049	C7H6OH##	benzaldehyde	107.8	1.9	2490.6
107.086	$C_8H_{10}H^{\#\#}$	C8 aromatics*	1478.3	3.3	1699.3
109.050	$C_3H_8O_4H$	C3 tetrols	9.1	1.9	2085.7
109.028	$C_6H_4O_2H^{\#\#}$	benzoquinone	9.1	1.7	1924.4
109.101	$C_8H_{12}H^{\#\#}$	terpene frag	19.8	1.9	1697.6
111.065	$C_3H_{10}O_4H$	propanoic acid +2 water cluster	29.8	3.9	2017.1
111.044	$C_6H_6O_2H^{\#\#}$	methyl furfural, benzene diol, frag [#]	247.3	21.2	695.1
111.080	C7H10OH##	C3 substituted furan, biogenic oxidation product, C7	2.9	1.1	1552.5

		cylcoalkenones C2 and C3			
111.117	$C_8H_{14}H^{\#\#}$	cyclohexanes frag, biogenic	79.8	2.7	1621.1
		frag, octadiene methylfurandion			
113.023	$C_5H_4O_3H^{\#\#}$	e, biogenic ox	47.5	3.9	2063.2
		product dimethylfuranon			
		e, methyloxopenta			
113.060	$C_6H_8O_2H^{\#\#}$	nal, biogenic ox	34.8	3.1	2081.4
		product, hydroxy methyl			
		cyclohexanone			
113.096	$C_7H_{12}OH^{\#\#}$	ethyl cyclopentanone	34.2	1.7	2398.1
		dimethylcyclohe			
113.132	$C_8H_{16}H$	xanes, alkane	34.6	2.0	1632.6
		C5 1-nitro, 2-			
114.055	C ₅ H ₇ NO ₂ H	oxy, 3-DBE, C5	7.2	1.0	2696.5
		NO^+ product			
115.039	$C_5H_6O_3H^{\#\#}$	C5 3-oxy 3DBE	33.4	3.8	2063.5
		C6 diketone			
115.075	$C_6H_{10}O_2H^{\#\#}$	vinylethyl	79.3	3.3	1846.7
		acetate			
115.112	C7H14OH##	dimethylpetnaon	40.4	1.3	2398.0
		e, heptanone			
116.906	CCl ₃	carbon tet O_2^+ product	70.6	3.7	1654.7
117.018	C ₄ H ₄ O ₄ H	fumaric acid	5.9	2.7	2088.3
		C5 3-oxy 2- DBF			
117.055	$C_5H_8O_3H^{\#\#}$	isomers,hydroxy	23.7	3.4	2063.5
		ethyl acrylate			
		butyl ester			
117.091	C6H12O2H##	acetic acid.diacetoneal	236.2	2.0	1810.7
	~ 0~~12 ~ 2**	cohol,butyl		2.0	1010.7
		acetate			

		C7 astructs 1			
117.127	$C_7 H_{16} O H^{\#\#}$	alcohols	5.4	1.0	1777.4
118.050	$C_4H_7NO_3H^{\#\#}$	butene nitrates	8.5	1.8	1659.8
119.034	$C_4H_6O_4H$	butane dioic acid	10.2	3.1	2088.1
119.107	$C_6H_{14}O_2H^{\#\#}$	C6 saturated diols, C6 carbonyl water cluster,butoxy ethanol	104.1	1.9	1826.1
119.089	$C_6H_{14}SH$	C6 thiols/sulfides	6.3	1.3	1780.2
120.093	C ₉ H ₁₂	C9 aromatics charge transfer	7.1	0.8	1670.1
121.065	C ₈ H ₈ OH ^{##}	tolualdehyde, acetophenone, dihydrobenzofur an, vinylphenol, benzeneacetalde hyde	64.5	1.8	2395.6
121.101	$C_9H_{12}H^{\#\#}$	C9 aromatics*	231.8	2.7	1800.9
122.008	C ₂ H ₃ NO ₅ H	C2H3NO5H+	13.2	1.9	1680.3
123.044	$C_7 H_6 O_2 H^{\#\#}$	salicyladehyde, benzodioxole, benzoic acid 4-ethylphenol.	17.8	2.5	2382.2
123.080	$C_8H_{10}OH^{\#\#}$	dimethylphenol, methylanisole	4.1	1.1	1797.4
123.117	C9H14H	terpene frag, santene	18.7	1.8	1685.0
124.039	$C_6H_5NO_2H^{\#\#}$	nitrobenzene	2.8	1.1	3081.4
125.060	$C_7 H_8 O_2 H^{\#\#}$	Guaiacol*	10.9	3.0	2670.7
125.132	$C_9H_{16}H$	trimethylcycloh exane frag	51.2	2.2	1694.6
127.075	$C_7H_{10}O_2H$	furanone	20.4	3.0	1878.7
127.112	$C_8H_{14}OH^{\#\#}$	cyclooctanone	30.6	1.7	2390.3
127.148	C9H18H	trimethylcycloh exane	12.1	1.7	1703.9
129.055	C ₆ H ₈ O ₃ H ^{##}	methyloxopente noic acid, acetylmethyloxi ranecarbaldehyd e	20.9	3.0	2057.5
129.091	$C_7H_{12}O_2H^{\#}$	allyl ester	40.4	2.7	1846.4

		isobutyric			
		acid,butyl			
		acrylate			
129.127	$C_8H_{16}OH^{\#\#}$	octanal	39.8	1.8	2388.0
129.070	$C_{10}H_8H^{\#\#}$	naphthalene*	34.3	3.3	2284.9
131.034	$C_5H_6O_4H$	C5 diacid +1DBE	10.7	2.8	2080.8
		dimethylfuranon			
121.070		е,	22.0	2.4	2055 (
131.070	$C_6H_{10}O_3H$	methyloxopenta	22.9	2.4	2055.6
		nal water cluster			
121 107		C7 carboxylic	12.0	17	1709.2
131.107	$C_7H_{14}O_2H$	acid	13.8	1./	1/08.5
		C6 hydroxy or			
133 086	C.H.O.H#	peroxy	58 2	1 1	2053 5
155.080	$C_{6}II_{12}O_{3}II$	acid,ethoxyethyl	38.2	1.1	2055.5
		acetate			
		Methylpyrrolo[
		2-a]pyrazine, 1-			
133.076	$C_8H_8N_2H$	methylindazole,	4.5	0.8	2470.2
		benzimidazole			
		methyl-			
		tetrahydronapht			
		halene, butenyl			
		benzene, 2-			
133.101	$C_{10}H_{12}H^{\#}$	phenyl 2-butene,	28.5	1.4	1730.2
		ethyl styrene,			
		isopropenyltolue			
		ne			
134.109	$C_{10}H_{14}$	C10 aromatics	3.0	0.7	1734.3
		charge transfer			
135.102	$C_6H_{14}O_3H$	C6 acid water	51.6	2.3	2051.4
		cluster			
135.138	$C_7H_{18}O_2H$	C/ alconol	5.8	1.0	1870.2
125 117	C II II##	C10 cromotion	152.2	17	1720 /
135.117	$C_{10}\Pi_{14}\Pi$	banzathiazala	133.5	1.7	17426
130.022	C7H5INSH	phenyl ester of	9.0	2.2	1/42.0
		acetic acid			
		methyl ester of			
137.060	$C_8H_8O_2H^{\#\#}$	henzoic acid	14.7	2.2	1867.3
		toluene aromatic			
		acid			
137.132	C10H16H##	Monoterpene*	276.0	3.3	902.9
	- 10 10		_,	2.2	, , <u> </u>

139.042	C4H10O3SH	sulfolane water cluster	3.7	1.7	1754.2
139.039	$C_7H_6O_3H$	sancync acid, biogenic ox product, PBzN indicator	5.9	1.4	2047.6
139.112	C ₉ H ₁₄ OH	nopinone, C5 substituted furan	38.3	1.5	2373.4
139.148	C10H18H	hydride abstraction	24.8	1.8	1754.0
140.034	C ₆ H ₅ NO ₃ H	nitrophenol, benzene nitrate [#]	15.4	5.4	1526.2
141.127	$C_9H_{16}OH^{\#\#}$	+1DBE, C9 alcohol +2DBE	15.7	1.3	2370.2
141.164	C10H20H	alkanes hydride abstraction	9.6	1.6	1761.5
143.107	$C_8H_{14}O_2H$	C8 2-oxy 2DBE isomers	23.3	2.3	1914.4
143.143	C ₉ H ₁₈ OH ^{##}	nonanal	87.7	2.0	2367.0
145.122	$C_8H_{16}O_2H^{\#\#}$	C8 carboxylic acid	22.5	1.9	1714.5
149.117	$C_7H_{16}O_3H$	C7 acid water cluster	19.4	1.4	1989.5
149.132	$C_{11}H_{16}H^{\#\#}$	C11 aromatics pinonaldehyde,	26.4	1.2	1789.1
151.112	$C_{10}H_{14}OH$	C10 aromatic alcohols	13.8	1.4	2004.7
151.148	$C_{11}H_{18}H$	C11 3-DBE methyl	14.4	1.5	1795.5
153.055	C ₈ H ₈ O ₃ H ^{##}	salicylate, C8 aromatic hydroxyacid apinene oxide,	10.6	1.5	2034.5
153.127	$C_{10}H_{16}OH^{\#\#}$	camphor, C6 substituted furans	23.8	1.7	1959.9
153.164	$C_{11}H_{20}H$	C11 2-DBE linalool.	11.6	1.5	1801.6
155.143	$C_{10}H_{18}OH^{\#\#}$	borneol,terpilen ol	14.5	1.8	1876.6

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C11 1-DBE,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	155.179	$C_{11}H_{22}H$	C11 alkanes	8.2	1.4	1807.5
			NO+ product			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Menthol-type			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	157.159	$C_{10}H_{20}OH^{\#\#}$	monoterpenes,	38.0	2.5	1871.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			decanal			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	161.081	$C_7H_{12}O_4H$	C7 di-acids	9.8	1.6	2047.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C9 saturated			
$\begin{array}{c} \mbox{carbonyl water} \\ \mbox{cluster} \\ \mbox{cluster} \\ \mbox{loss} \\ 161.132 \\ C_{12}H_{16}H^{\#} \\ cluster \\ \mbox{c} \\ C8 acid water \\ \mbox{cluster} \\ \mbox{c} \\ C8 acid water \\ \mbox{cluster} \\ \mbox{c} \\ 1.9 \\ 1981.7 \\ \mbox{loss} \\ 1.9 \\ 1.9 \\ 1.15 \\ 1.4 \\ 1829.4 \\ 165.164 \\ \mbox{c} \\ 1.4 \\ 1829.4 \\ 1.5 \\ 1834.4 \\ 167.179 \\ \mbox{c} \\ 1.2 \\ \mbox{loss} \\ 1.6 \\ 1.4 \\ 1839.2 \\ \mbox{pinonaldehyde}, \\ 169.192 \\ \mbox{c} \\ 169.195 \\ \mbox{c} \\ 12H_{24}H \\ \mbox{alkyl frag} \\ 10.1 \\ 1.7 \\ 1843.8 \\ 171.174 \\ \mbox{c} \\ 10.0 \\ \mbox{loss} \\ 1.6 \\ 1$	161.154	$C_9H_{20}O_2H$	diols, C9	13.1	1.3	1945.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			carbonyl water			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (1 1 2 2	ани#	cluster	2.5	0.0	1004.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	161.132	$C_{12}H_{16}H^{m}$	aromatic frag	3.5	0.8	1824.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	163.133	$C_8H_{18}O_3H^{\#\#}$	C8 acid water	7.8	1.9	1981.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (2 1 40		cluster	7.0	1.4	1000 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163.148	$C_{12}H_{18}H^{m}$	C12 aromatics	7.0	1.4	1829.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	165.164	$C_{12}H_{20}H$	CI2 3-DBE	13.1	1.5	1834.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	167.179	$C_{12}H_{22}H$	C12 2-DBE	7.6	1.4	1839.2
169.122 $C_{10}H_{16}O_{2}H$ apinene17.12.01953.8hydroperoxidehydroperoxide10.11.71843.8171.174 $C_{12}H_{24}H$ $C12 1-DBE,$ alkyl frag10.01.41907.1178.071 $C_{6}H_{11}NO_{3}H$ $C6 1$ -nitro 5-oxy 2-DBE2.41.01863.3179.179 $C_{13}H_{22}H$ C13 3-DBE11.81.41864.9C14H10 H+ $C_{14}H_{10}H$ phenanthrene H ₃ O ⁺ 20.62.61888.7181.195 $C_{13}H_{24}H$ C13 2-DBE6.41.41868.6183.211 $C_{13}H_{24}H$ C13 2-DBE6.41.41868.6183.211 $C_{13}H_{24}H$ C13 2-DBE6.41.41868.6183.211 $C_{13}H_{24}H$ C13 2-DBE6.41.41868.6183.211 $C_{13}H_{24}H$ Bodecanal8.81.61910.1191.179 $C_{14}H_{21}H$ Bodecanal8.81.61910.1191.179 $C_{14}H_{24}H$ 11.41.51888.4195.174 $C_{13}H_{24}H$ Solanone2.41.1191.0195.211 $C_{14}H_{28}H$ 7.31.61893.9199.169 $C_{12}H_{22}O_{2}H$ Menthyl acetate15.41.61965.3203.179 $C_{15}H_{24}H$ 23.41.71904.0207.211 $C_{15}H_{28}H$ Drimane5.81.31908.3211.242 $C_{15}H_{30}H$ Drimane5.81.31908.3 <td>1(0,122</td> <td></td> <td>pinonaldehyde,</td> <td>17.1</td> <td>2.0</td> <td>1055.0</td>	1(0,122		pinonaldehyde,	17.1	2.0	1055.0
169.195 $C_{12}H_{24}H$ C12 1-DBE, alkyl frag10.11.71843.8171.174 $C_{11}H_{22}OH$ C11 1-oxy 1- DBE10.01.41907.1178.071 $C_{6}H_{11}NO_{5}H$ C6 1-nitro 5-oxy 2-DBE2.41.01863.3179.179 $C_{13}H_{22}H$ C13 3-DBE11.81.41864.9C14H10 H+ $C_{14}H_{10}H$ phenanthrene phenanthrene20.62.61888.7181.195 $C_{13}H_{24}H$ C13 2-DBE6.41.41868.6183.211 $C_{13}H_{24}H$ C13 2-DBE6.41.41868.6183.211 $C_{13}H_{24}H$ C13 2-DBE6.41.41868.6183.211 $C_{13}H_{24}H$ Bodecanal8.81.61910.1191.179 $C_{14}H_{2}H$ 8.22.91885.4193.195 $C_{14}H_{24}H$ 11.41.51888.4195.174 $C_{13}H_{20}H$ Solanone2.41.1191.0195.211 $C_{14}H_{28}H$ 7.31.61893.9199.169 $C_{12}H_{22}O_{2}H$ Menthyl acetate15.41.61965.3203.179 $C_{15}H_{24}H$ 23.41.71904.0207.211 $C_{15}H_{28}H$ Pirmane5.81.31908.3211.242 $C_{15}H_{28}H$ Drimane5.81.31908.3	169.122	$C_{10}H_{16}O_2H$	apinene	17.1	2.0	1955.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nydroperoxide			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	169.195	$C_{12}H_{24}H$	C12 I-DBE,	10.1	1.7	1843.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			alkyl frag			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	171.174	$C_{11}H_{22}OH$	C11 1-0XY 1-	10.0	1.4	1907.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			DBE C6 1 pitro 5 ovv			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	178.071	$C_6H_{11}NO_5H$	2 DBE	2.4	1.0	1863.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170 170	CuaHaaH	C13 3-DBE	11.8	1 4	1864.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/J.1/J	C13112211	Anthracene or	11.0	1.7	1004.9
H+ClaHloHplendment20.020.020.01000.7181.195 $C_{13}H_{24}H$ C13 2-DBE6.41.41868.6183.211 $C_{13}H_{26}H$ 6.91.51872.2185.190 $C_{12}H_{25}O$ Dodecanal8.81.61910.1191.179 $C_{14}H_{22}H$ 8.22.91885.4193.195 $C_{14}H_{24}H$ 11.41.51888.4195.174 $C_{13}H_{22}OH$ Solanone2.41.1191.206 $C_{14}H_{24}H$ 6.61.41891.2197.226 $C_{14}H_{28}H$ 7.31.61893.9199.169 $C_{12}H_{22}O_{2}H$ Menthyl acetate15.41.61965.3203.179 $C_{15}H_{24}H$ 23.41.71904.0207.211 $C_{15}H_{26}H$ 9.81.31906.2209.226 $C_{15}H_{28}H$ Drimane5.81.31908.3211.242 $C_{15}H_{30}H$ 6.11.51910.3	C14H10	CuHud	nhenanthrene	20.6	2.6	1888 7
181.195 $C_{13}H_{24}H$ $C13 2-DBE$ 6.4 1.4 1868.6 183.211 $C_{13}H_{26}H$ 6.9 1.5 1872.2 185.190 $C_{12}H_{25}O$ Dodecanal 8.8 1.6 1910.1 191.179 $C_{14}H_{22}H$ 8.2 2.9 1885.4 193.195 $C_{14}H_{24}H$ 11.4 1.5 1888.4 195.174 $C_{13}H_{22}OH$ Solanone 2.4 1.1 1919.0 195.211 $C_{14}H_{26}H$ 6.6 1.4 1891.2 197.226 $C_{14}H_{28}H$ 7.3 1.6 1893.9 199.169 $C_{12}H_{22}O_{2}H$ Menthyl acetate 15.4 1.6 1965.3 203.179 $C_{15}H_{24}H$ 23.4 1.7 1904.0 207.211 $C_{15}H_{26}H$ 9.8 1.3 1906.2 209.226 $C_{15}H_{28}H$ Drimane 5.8 1.3 1908.3 211.242 $C_{15}H_{30}H$ 6.1 1.5 1910.3	H+	014111011	H_2O^+	20.0	2.0	1000.7
101111 $C_{13}H_{24}H$ $C_{10}T_{12}H_{25}H$ 6.1 1.1 10000 183.211 $C_{13}H_{26}H$ 6.9 1.5 1872.2 185.190 $C_{12}H_{25}O$ Dodecanal 8.8 1.6 1910.1 191.179 $C_{14}H_{22}H$ 8.2 2.9 1885.4 193.195 $C_{14}H_{24}H$ 11.4 1.5 1888.4 195.174 $C_{13}H_{22}OH$ Solanone 2.4 1.1 1919.0 195.211 $C_{14}H_{26}H$ 6.6 1.4 1891.2 197.226 $C_{14}H_{28}H$ 7.3 1.6 1893.9 199.169 $C_{12}H_{22}O_{2}H$ Menthyl acetate 15.4 1.6 1965.3 203.179 $C_{15}H_{24}H$ 23.4 1.7 1904.0 207.211 $C_{15}H_{26}H$ 9.8 1.3 1906.2 209.226 $C_{15}H_{28}H$ Drimane 5.8 1.3 1908.3 211.242 $C_{15}H_{30}H$ 6.1 1.5 1910.3	181.195	$C_{13}H_{24}H$	C13 2-DBE	6.4	1.4	1868.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	183.211	C13H26H	0.02222	6.9	1.5	1872.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	185.190	$C_{12}H_{25}O$	Dodecanal	8.8	1.6	1910.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	191.179	$C_{14}H_{22}H$		8.2	2.9	1885.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	193.195	$C_{14}H_{24}H$		11.4	1.5	1888.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	195.174	C ₁₃ H ₂₂ OH	Solanone	2.4	1.1	1919.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	195.211	$C_{14}H_{26}H$		6.6	1.4	1891.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	197.226	$C_{14}H_{28}H$		7.3	1.6	1893.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	199.169	$C_{12}H_{22}O_2H$	Menthyl acetate	15.4	1.6	1965.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	203.179	$C_{15}H_{22}H$		5.0	1.2	1901.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	205.195	$C_{15}H_{24}H$		23.4	1.7	1904.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	207.211	$C_{15}H_{26}H$		9.8	1.3	1906.2
211.242 C ₁₅ H ₃₀ H 6.1 1.5 1910.3	209.226	$C_{15}H_{28}H$	Drimane	5.8	1.3	1908.3
	211.242	$C_{15}H_{30}H$		6.1	1.5	1910.3

215.179	$C_{16}H_{22}H$		4.7	1.4	1914.4
219.211	$C_{16}H_{26}H$	Perhydropyrene	6.9	1.6	1917.8
221.226	$C_{16}H_{28}H$		6.4	1.2	1919.4
223.064	$C_6H_{18}O_3Si_3H$	D3 Siloxane*	70.1	7.9	1074.9
297.082	$C_8H_{24}O_4Si_4H^{\#\#}$	D4 Siloxane*	41.5	6.8	872.1
299.062	$C_7H_{23}O_5Si_4$	D5 Siloxane frag	25.7	2.8	1948.9
371.101	$C_{10}H_{30}O_5Si_5H^{\#\!\#\!}$	D5 Siloxane*	15.1	6.7	709.5

30 * The VOC species are calibrated using the gas standard.

31 [#]The VOC species are calibrated using the Liquid Calibration Unit (LCU).

32 ** LOD of VOC species was derived at time resolutions of 10 s.

^{##} Reaction rate constants of the 105 species with OH radicals (Wu et al., 2020) were

34 used in this study.

35 [@] Suggested compounds of ion signals were determined according to the results in (Wu

36 et al., 2020; Gkatzelis et al., 2021).

38

Figure S1. (a) Geographical location of the CTT site in China. (b) Geographical 39 40 locations of the CTT, GIG, and JNU sites in Guangzhou. (c) Picture showing the CTT 41 and the location of the 450 m Look Out platform. (d) Picture showing the 450 m Look 42 Out platform. (e) Picture showing the instruments deployed in the observation room. (f) 43 Picture showing the sampling inlet for instruments at the 450 m Look Out platform. (g) 44 Picture showing the window of the observation room. Note that the map in panel (b) is 45 extracted from © Google Maps by the authors; The picture in panel (d) is obtained from 46 the website: https://720yun.com/t/ff8jusyvrk2?scene_id=23557335.

Figure S2. Average ratios of concentrations of various VOCs species measured at 450
m during the CTT campaign to those measured at ground level during the GIG
campaign as a function of m/z.

Figure S3. Diurnal variations in ratios of concentrations of the selected VOC species
measured on non-working days to those measured on working days.

54

Figure S4. Diurnal variations in temperature (T) and relative humidity (RH) measured at 488 m. Thick blue solid lines and shaded areas represent averages and standard deviations during the CTT campaign; Thin blue solid and dashed lines represent averages on working and non-working days, respectively.

59 **PMF receptor model**

60 As expressed in Eq. (S1), the PMF model is a multivariate factor analysis tool that 61 could decompose a data matrix X into two matrices including the source contribution 62 matrix g and the source profile matrix f (Paatero and Tapper, 1994; Paatero et al., 2014).

$$X_{ij} = \sum_{k=1}^{p} g_{ik} \cdot f_{kj} + e_{ij}$$
(S1)

63 where *i* is the number of measured samples during the campaign, *j* is the number of 64 measured chemical species, *p* is a user-defined number of sources, and *e* is the residual 65 matrix. The PMF model is solved by minimizing the objective function *Q* using the 66 measurement uncertainty matrix *U* and the residual matrix *e*, as expressed in Eq. (S2),

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left[\frac{e_{ij}}{U_{ij}}\right]^2$$
(S2)

67 where n is the number of measured samples and j is the number of chemical species.

In this study, the 10-min mean mixing ratios of VOC species were used in the PMF
model. The measurement uncertainty matrix *U* could be described in Eq. (S3),

$$U_{ij} = \sqrt{(NSR_{ij} \cdot x_{ij})^2 + (p_{1j} \cdot x_{ij})^2 + 2 \cdot (p_2 \cdot x_{ij})^2 + LOD^2}$$
(S3)

where NSR_{ij} is the NSR for species *j*, as expressed in Eq. (S4); p_{1j} was assigned to 15% for the VOC species calibrated by the gas standard and LCU and 50% for the remaining VOC species; p_2 is the uncertainty caused by the utilization of mass flow controller (MFC) and was assigned to 1%. In this study, two MFCs were used in the calibration system: one for the gas standard and the other for the zero-air.

$$NSR_{ij} = \frac{\sqrt{C_{fj} \cdot x_{ij} \cdot t + 2 \cdot B \cdot t}}{C_{fj} \cdot x_{ij} \cdot t}$$
(S4)

where NSR_{ij} is the NSR for the *i*th sample of species *j*; C_{fj} and *B* are the average sensitivity and background signal of species *j* during the campaign; *t* is the time resolution (10 min) of VOC concentrations used in PMF. 78 In this study, a total of 225 chemical species (Table S1) were used in the PMF 79 model to quantitatively analyze contributions of likely sources to the VOCs 80 measurements made during the CTT campaign. VOC species with an SNR \geq 1, 0.2 < 81 SNR < 1, and SNR<0.2 were categorized as "strong", "weak", and "bad", respectively. 82 The uncertainties of weak VOC species were doubled, while bad species were removed 83 from the analysis. Figure S5 shows the change in Q/Qexpected ratio with the increased 84 number of factors in PMF. The Q/Qexpected ratio decreased slowly when the number of 85 factors increased from 5 to 6. In addition, profiles of two certain factors were highly 86 correlated when the number of factors exceeded 5, resulting in an excessive 87 decomposition of the VOCs measurements. As shown in Figure S6, the VOCs 88 measurements were well reconstructed by a five-factor solution, which was deemed optimal for the PMF analysis in this study. 89

90

Figure S5. Variation in the ratio of Q/Q_{expected} with change in the number of factors for
the PMF analysis.

As shown in Figures 6 and S7, the most prominent composition in factor 1 were OVOC species including acetic acid, formaldehyde, acetone, methanol, acetaldehyde, hydroxyacetone, and formic acid, which contributed to over 70% of the concentration of the factor. These OVOC species with low molecular weights generally have complex sources in urban environments (Hu et al., 2013; Karl et al., 2018; McDonald et al., 2018; Pallavi et al., 2019; Gkatzelis et al., 2021), such as vehicular exhausts, various industrial

99 processes, biogenic emissions, as well as the oxidative degradation products of 100 hydrocarbons. The diurnal profile of factor 1 increased between LT 09:00-14:00 and 101 continuously decreased from LT 14:00 to 08:00 on the next day, which is consistent 102 with the diurnal variation in ozone. Hourly mean contributions of factor 1 were also 103 well correlated with those of ozone (r=0.75), implying strong dependence of factor 1 104 on sunlight and temperature. As a result, it is highly challenging to identify sources of 105 factor 1 merely relying on its factor profile that does not contain dominant fingerprint 106 species of specific emission sources. Therefore, factor 1 was assigned to the daytime-107 mixed source, predominantly including contributions from biogenic emissions, 108 photooxidation products of various VOC species, and other emissions of sources that 109 have strong dependences on solar radiation and temperature.

110

Figure S6. Scatter plots of PMF-reconstructed TVOC concentrations (TVOC_reconst)
versus measured TVOC concentrations (TVOC_measured).

Factor 2 was characterized by a high percentage (72%) of ethanol and exhibited a similar diurnal pattern to ethanol. These results confirm that contributions of factor 2 were closely associated with visitor-related emissions. In addition, the contributions of factor 2 had the narrowest autocorrelation profile (Figure 6), implying that they were contributed by the most local emission sources. Thus, factor 2 was assigned to the visitor-related source, predominantly including contributions from human breath, 119 cooking, and the volatilization of ethanol-containing products and personal care 120 products. It should be noted that large fractions of ethanol emitted from personal care 121 products were generally attributed to the VCP source in previous studies (McDonald et 122 al., 2018; Gkatzelis et al., 2021). This is correct when the observation site was not 123 affected by intensive emissions from a known source such as visitors at the 450-m 124 platform. The visitor-related source was resolved in PMF to separate contributions of 125 VCPs from those emitted by visitors.

126

Figure S7. Factor profiles (covering the full range of the mass spectra) of the fivefactors resolved by the PMF model.

Factor 3 was primarily composed of acetic acid, methanol, ethyl acetate, toluene, ethanol, and C8 aromatics, contributing to over 62% of the concentration of the factor. The diurnal profile of factor 3 was highly consistent with those of aromatics, such as toluene, exhibiting lower mixing ratios during the daytime with a minimum occurring

133 at LT 14:00. Factor 3 explained over 90% and 70% of the variations in toluene and C8 134 aromatics, respectively, during the campaign. As reported in the literature (Zhang et al., 135 2013; Liu et al., 2016; Pallavi et al., 2019), aromatics are known components of 136 vehicular exhausts, solvent usage, industrial raw materials, and emissions of various 137 industrial processes. However, the PMF solution can not explicitly separate these 138 sources in this study due to the lack of measurements for alkanes and low-carbon 139 alkenes. In addition, factor 3 was less affected by visitor-related emissions due to its 140 lower contributions during the opening hours of the 450-m platform on non-working 141 days. Therefore, factor 3 was assigned to the vehicular+industrial source, 142 predominantly including contributions from vehicular exhausts and emissions of 143 various industrial processes.

144 Methanol, ethanol, acetone, and acetic acid were the most abundant species in 145 factor 4, which contributed to over 51% of the concentration of the factor. The diurnal 146 profile of factor 4 exhibited insignificant variability with slight increases between LT 08:00-13:00. Only a small fraction (<5%) of reactive chemical species such as 147 148 aromatics were attributed to this factor. Factor 4 was also less affected by visitor-related 149 emissions due to its lower contributions during the opening hours of the 450-m platform 150 on non-working days. To further explore likely sources of factor 4, we also conducted 151 a cluster analysis of 72-h backward trajectories, as detailed in the SI file. As shown in 152 Figure S7, contributions of factor 4 accounted for 13% of the TVOC mixing ratio when 153 affected by continental airflows, but only accounted for 3% when affected by marine 154 airflows. However, contributions of the other factors displayed relatively weaker 155 variations in different clusters of the backward trajectories. These results confirm that 156 contributions of factor 4 had a strong dependence on wind direction and were highly 157 associated with advection transport from nearby or distant cities. In addition, the 158 contributions of factor 4 had the flattest autocorrelation profile (Figure 6), indicating 159 that it was less affected by local emissions. Therefore, factor 4 was assigned to the 160 regional transport source, predominantly including contributions from advection 161 transport of aged air masses.

162

Methanol, acetone, formaldehyde, and acetaldehyde were the most prominent

163 species in factor 5, which contributed to over 46% of the concentration of the factor. In 164 addition to contributions from secondary formation and vehicular exhausts, these OVOC species were also known components of VCPs (McDonald et al., 2018; 165 166 Gkatzelis et al., 2021). As shown in Figure 6, the diurnal profile of factor 5 exhibited 167 peak values between LT 08:00-09:00, during which personal care products were 168 extensively used and vehicular exhausts were extensively emitted. Therefore, the 169 diurnal variation pattern of factor 5 was similar to NOx (Figure 4), which is a typical 170 tracer of vehicular exhausts in urban areas. The diurnal profile of factor 5 was also 171 consistent with that of D5-siloxane, which is a key tracer for VCPs in urban 172 environments (Tang et al., 2015; Gkatzelis et al., 2021). As shown in Figure 8, factor 5 173 contributed to a large fraction (45%) of D5-siloxane and had an ignorable contribution 174 to toluene, confirming the predominant contributions of VCPs, rather than vehicular 175 exhausts, in factor 5. Thus, factor 5 was assigned to the VCP-dominated source.

Figure S8. Average diurnal variations in ratios of contributions of the five PMF factorson non-working days to those on working days.

Figure S9. Diurnal variations in ozone mixing ratios measured at 488 m. Thick blue solid lines and shaded areas represent averages and standard deviations during the CTT campaign; Thin blue solid and dashed lines represent averages on working and non-working days, respectively.

185 Cluster analysis of backward trajectories

186 Backward trajectories (72 h) of air masses at an arrival altitude of 450 m over the 187 CTT site were calculated for each hour during the campaign using the HYSPLIT 188 Trajectory Model in MeteoInfo software (v 3.0.2). The backward trajectories were 189 calculated based on meteorological data (one-degree resolution, global) from the 190 GDAS system (ftp://ftp.arl.noaa.gov/pub/archives/gdas1) (Stein et al., 2015). Cluster 191 analysis of the backward trajectories was performed in the MeteoInfo software using 192 the K-means algorithm based on Euclidean distances (Wang, 2014), as shown in Figure 193 S10.

194

Figure S10. Cluster analysis of 72-h backward trajectories calculated for 24 hours on each day at an arrival altitude of 450 m above ground level at the CTT site. The red star indicates the CTT site. Pie charts indicate the average contributions of the five PMF factors in each cluster. The two digits in each parenthesis refer to the faction of the trajectories and the average TVOC concentration, respectively, in each cluster. C1, C2, and C3 indicate the three clusters of the trajectories, respectively.

201 Contributions of the five factors displayed strong variations during the campaign.

202 For example, contributions of the visitor-related and regional transport sources 203 increased from October 3 to November 4, along with prominent decreases in 204 contributions of the vehicular+industrial source. It indicates that the contributions of 205 different sources had strong dependences on wind direction. As shown in Figure S10, 206 the three clusters of air masses in this study are similar to those reported in the literature 207 (Xia et al., 2021). Cluster 1, accounting for 26% of the backward trajectories, represents 208 air masses that predominantly originated from the East China Sea and traveled over 209 coastal regions before reaching the CTT site. Cluster 2, accounting for 17% of the 210 backward trajectories, represents air masses that predominantly originated from the 211 South China Sea and traveled over the southwest PRD region before reaching the CTT 212 site. Cluster 3, accounting for 57% of the backward trajectories, represents air masses 213 that predominantly originated from inland regions.

214 The average TVOC mixing ratios in the three clusters were 44.8, 74.9, and 64.5 215 ppb, respectively. Cluster 2 was characterized by the highest TVOC mixing ratios during the campaign with the largest contributions (38%) from the vehicular+industrial 216 217 source. In addition, the regional transport source only contributed to 3% of TVOC 218 mixing ratios in cluster 2 due to the marine origins of air masses. It implies that the 219 measured TVOC mixing ratios were more contributed by local emissions with the 220 higher fractions of reactive VOC species (such as aromatic species) when southwesterly 221 winds prevailed over the PRD region, leading to a frequent occurrence of extremely 222 high ozone mixing ratios. By contrast, contribution fractions of the vehicular+industrial 223 source decreased to 30% and 23% in clusters 1 and 3, respectively, accompanied by 224 significant increases in contributions of the regional transport source. Therefore, 225 transport processes, driven by aged air masses from continental or coastal regions, were 226 also important sources, contributing to over 10% of TVOCs mixing ratios. Contribution 227 fractions of the daytime-mixed source slightly varied in the range of 20-22% among 228 the three clusters of air masses, indicating a weaker wind direction dependence of the 229 daytime-mixed source in comparison to other sources. The VCP-dominated source 230 accounted for the highest fraction (14%) of TVOC mixing ratios in cluster 2 and 231 comparable fractions in clusters 1 (9%) and 3 (10%), further confirming predominant 232 contributions of local anthropogenic emissions when affected by southeasterly air flows. 233 The visitor-related source contributed to 32% and 29% of TVOC mixing ratios in clusters 1 and 3, respectively, which was greater than in cluster 1. The increased 234 235 percentages of the visitor-related source in clusters 1 and 3 could be predominantly 236 attributed to reduced contributions from the vehicular+industrial source. In addition, clusters 1 and 3 mainly occurred in the middle and late periods of the campaign, during 237 238 which the 450-m platform took on more visitors with the successful control of the 239 COVID-19 pandemic in China. Therefore, the larger numbers of visitors in clusters 1 240 and 3 were another important reason for the increased percentages of the visitor-related 241 source in TVOC mixing ratios.

Figure S11. Scatter plots of (a) toluene versus benzene mixing ratios, (b) monoterpene
versus isoprene mixing ratios in the daytime (LT 08:00–18:00), and (c) acetonitrile
versus CO mixing ratios.

246

247 Figure S12. Diurnal variation in planetary boundary layer height (PBLH). Blue solid

248 lines and shaded areas represent averages and standard deviations, respectively.

249 **References**

250 Gkatzelis, G. I., Coggon, M. M., McDonald, B. C., Peischl, J., Gilman, J. B., Aikin, 251 K. C., Robinson, M. A., Canonaco, F., Prevot, A. S. H., Trainer, M., and Warneke, C.: 252 Observations Confirm that Volatile Chemical Products Are a Major Source of 253 Petrochemical Emissions in U.S. Cities, Environ Sci Technol, 254 https://doi.org/10.1021/acs.est.0c05471, 2021.

Hu, L., Millet, D. B., Kim, S. Y., Wells, K. C., Griffis, T. J., Fischer, E. V., Helmig,
D., Hueber, J., and Curtis, A. J.: North American acetone sources determined from tall
tower measurements and inverse modeling, Atmos. Chem. Phys., 13, 3379-3392,
<u>https://doi.org/10.5194/acp-13-3379-2013</u>, 2013.

Karl, T., Striednig, M., Graus, M., Hammerle, A., and Wohlfahrt, G.: Urban flux
measurements reveal a large pool of oxygenated volatile organic compound emissions,
Proceedings of the National Academy of Sciences of the United States of America, 115,
1186-1191, https://doi.org/10.1073/pnas.1714715115, 2018.

Liu, B., Liang, D., Yang, J., Dai, Q., Bi, X., Feng, Y., Yuan, J., Xiao, Z., Zhang, Y.,
and Xu, H.: Characterization and source apportionment of volatile organic compounds
based on 1-year of observational data in Tianjin, China, Environ Pollut, 218, 757-769,
<u>https://doi.org/10.1016/j.envpol.2016.07.072</u>, 2016.

McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A., Cappa,
C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A., Cui, Y. Y., Kim, S.W., Gentner, D. R., Isaacman-VanWertz, G., Goldstein, A. H., Harley, R. A., Frost, G.
J., Roberts, J. M., Ryerson, T. B., and Trainer, M.: Volatile chemical products emerging
as largest petrochemical source of urban organic emissions, Science, 359, 760,
<u>https://doi.org/10.1126/science.aaq0524</u>, 2018.

Paatero, P., and Tapper, U.: Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values, Environmetrics, 5, 111126, https://doi.org/10.1002/env.3170050203, 1994.

Paatero, P., Eberly, S., Brown, S. G., and Norris, G. A.: Methods for estimating
uncertainty in factor analytic solutions, Atmos. Meas. Tech., 7, 781-797,
<u>https://doi.org/10.5194/amt-7-781-2014</u>, 2014.

Pallavi, Sinha, B., and Sinha, V.: Source apportionment of volatile organic
compounds in the northwest Indo-Gangetic Plain using a positive matrix factorization
model, Atmos. Chem. Phys., 19, 15467-15482, <u>https://doi.org/10.5194/acp-19-15467-</u>
2019, 2019.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and
Ngan, F.: NOAA'S HYSPLIT ATMOSPHERIC TRANSPORT AND DISPERSION
MODELING SYSTEM, B Am Meteorol Soc, 96, 2059-2077,
<u>https://doi.org/10.1175/bams-d-14-00110.1</u>, 2015.

Tang, X., Misztal, P. K., Nazaroff, W. W., and Goldstein, A. H.: Siloxanes Are the
Most Abundant Volatile Organic Compound Emitted from Engineering Students in a
Classroom, Environmental Science & Technology Letters, 2, 303-307,
<u>https://doi.org/10.1021/acs.estlett.5b00256</u>, 2015.

Wang, Y. Q.: MeteoInfo: GIS software for meteorological data visualization and analysis, Meteorol Appl, 21, 360-368, <u>https://doi.org/10.1002/met.1345</u>, 2014.

Wu, C., Wang, C., Wang, S., Wang, W., Yuan, B., Qi, J., Wang, B., Wang, H., Wang,
C., Song, W., Wang, X., Hu, W., Lou, S., Ye, C., Peng, Y., Wang, Z., Huangfu, Y., Xie,
Y., Zhu, M., Zheng, J., Wang, X., Jiang, B., Zhang, Z., and Shao, M.: Measurement
report: Important contributions of oxygenated compounds to emissions and chemistry
of volatile organic compounds in urban air, Atmos. Chem. Phys., 20, 14769-14785,
<u>https://doi.org/10.5194/acp-20-14769-2020</u>, 2020.

Xia, S.-Y., Wang, C., Zhu, B., Chen, X., Feng, N., Yu, G.-H., and Huang, X.-F.:
Long-term observations of oxygenated volatile organic compounds (OVOCs) in an
urban atmosphere in southern China, 2014–2019, Environ Pollut, 270, 116301,
<u>https://doi.org/10.1016/j.envpol.2020.116301</u>, 2021.

Zhang, Y., Wang, X., Barletta, B., Simpson, I. J., Blake, D. R., Fu, X., Zhang, Z.,
He, Q., Liu, T., Zhao, X., and Ding, X.: Source attributions of hazardous aromatic
hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region,
J Hazard Mater, 250-251, 403-411, <u>https://doi.org/10.1016/j.jhazmat.2013.02.023</u>,
2013.