Articles | Volume 21, issue 12
https://doi.org/10.5194/acp-21-9809-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-9809-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors
Bida Jian
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
Gansu, China
Jiming Li
CORRESPONDING AUTHOR
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
Gansu, China
Guoyin Wang
Department of Atmospheric and Oceanic Sciences & Institute of
Atmospheric Sciences, Fudan University, Shanghai, China
Yuxin Zhao
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
Gansu, China
Yarong Li
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
Gansu, China
Jing Wang
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
Gansu, China
Min Zhang
Inner Mongolia Institute of Meteorological Sciences, Hohhot, Inner
Mongolia, China
Jianping Huang
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou,
Gansu, China
Related authors
Ruixue Li, Bida Jian, Jiming Li, Deyu Wen, Lijie Zhang, Yang Wang, and Yuan Wang
Atmos. Chem. Phys., 24, 9777–9803, https://doi.org/10.5194/acp-24-9777-2024, https://doi.org/10.5194/acp-24-9777-2024, 2024
Short summary
Short summary
Hemispheric or interannual averages of reflected solar radiation (RSR) can mask signals from seasonally active or region-specific mechanisms. We examine RSR characteristics from latitude and month perspectives, revealing decreased trends observed by CERES in both hemispheres driven by clear-sky atmospheric and cloud components at 30–50° N and cloud components at 0–50° S. AVHRR achieves symmetry criteria within uncertainty and is suitable for the long-term analysis of hemispheric RSR symmetry.
Yuxin Zhao, Jiming Li, Lijie Zhang, Cong Deng, Yarong Li, Bida Jian, and Jianping Huang
Atmos. Chem. Phys., 23, 743–769, https://doi.org/10.5194/acp-23-743-2023, https://doi.org/10.5194/acp-23-743-2023, 2023
Short summary
Short summary
Diurnal variations of clouds play an important role in the radiative budget and precipitation. Based on satellite observations, reanalysis, and CMIP6 outputs, the diurnal variations in total cloud cover and cloud vertical distribution over the Tibetan Plateau are explored. The diurnal cycle of cirrus is a key focus and found to have different characteristics from those found in the tropics. The relationship between the diurnal cycle of cirrus and meteorological factors is also discussed.
Jiayi Li, Yang Wang, Jiming Li, Weiyuan Zhang, Lijie Zhang, and Yuan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3601, https://doi.org/10.5194/egusphere-2024-3601, 2024
Short summary
Short summary
A key challenge in climate projections is the uncertainty in cloud water response to anthropogenic aerosols, especially its time-dependence on diurnal microphysical-dynamic boundary layer feedback. Geostationary satellite shows neglecting the variations induces a compensation up to 45% of the initial cooling effect from increased cloud droplet concentration. The results provide new insights in aerosol-cloud interactions, verifying this is a significant yet often overlooked source of uncertainty.
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
Ruixue Li, Bida Jian, Jiming Li, Deyu Wen, Lijie Zhang, Yang Wang, and Yuan Wang
Atmos. Chem. Phys., 24, 9777–9803, https://doi.org/10.5194/acp-24-9777-2024, https://doi.org/10.5194/acp-24-9777-2024, 2024
Short summary
Short summary
Hemispheric or interannual averages of reflected solar radiation (RSR) can mask signals from seasonally active or region-specific mechanisms. We examine RSR characteristics from latitude and month perspectives, revealing decreased trends observed by CERES in both hemispheres driven by clear-sky atmospheric and cloud components at 30–50° N and cloud components at 0–50° S. AVHRR achieves symmetry criteria within uncertainty and is suitable for the long-term analysis of hemispheric RSR symmetry.
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024, https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
Short summary
This study identifies deep convection systems (DCSs), including deep convection cores and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO). The DCSs over the TP are less frequent, showing narrower and thinner cores and anvils compared to those over the TO. TP DCSs show a stronger longwave cloud radiative effect at the surface and in the low-level atmosphere. Distinct aerosol–cloud–precipitation interaction is found in TP DCSs, probably due to the cold cloud bases.
Honglin Pan, Jianping Huang, Jiming Li, Zhongwei Huang, Minzhong Wang, Ali Mamtimin, Wen Huo, Fan Yang, Tian Zhou, and Kanike Raghavendra Kumar
Earth Syst. Sci. Data, 16, 1185–1207, https://doi.org/10.5194/essd-16-1185-2024, https://doi.org/10.5194/essd-16-1185-2024, 2024
Short summary
Short summary
We applied several correction procedures and rigorously checked for data quality constraints during the long observation period spanning almost 14 years (2007–2020). Nevertheless, some uncertainties remain, mainly due to technical constraints and limited documentation of the measurements. Even though not completely accurate, this strategy is expected to at least reduce the inaccuracy of the computed characteristic value of aerosol optical parameters.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Yuxin Zhao, Jiming Li, Lijie Zhang, Cong Deng, Yarong Li, Bida Jian, and Jianping Huang
Atmos. Chem. Phys., 23, 743–769, https://doi.org/10.5194/acp-23-743-2023, https://doi.org/10.5194/acp-23-743-2023, 2023
Short summary
Short summary
Diurnal variations of clouds play an important role in the radiative budget and precipitation. Based on satellite observations, reanalysis, and CMIP6 outputs, the diurnal variations in total cloud cover and cloud vertical distribution over the Tibetan Plateau are explored. The diurnal cycle of cirrus is a key focus and found to have different characteristics from those found in the tropics. The relationship between the diurnal cycle of cirrus and meteorological factors is also discussed.
Jingyu Yao, Zhongming Gao, Jianping Huang, Heping Liu, and Guoyin Wang
Atmos. Chem. Phys., 21, 15589–15603, https://doi.org/10.5194/acp-21-15589-2021, https://doi.org/10.5194/acp-21-15589-2021, 2021
Short summary
Short summary
Gap-filling usually accounts for a large source of uncertainties in the annual CO2 fluxes, though gap-filling CO2 fluxes is challenging at dryland sites due to small fluxes. Using data collected from a semiarid site, four machine learning methods are evaluated with different lengths of artificial gaps. The artificial neural network and random forest methods outperform the other methods. With these methods, uncertainties in the annual CO2 flux at this site are estimated to be within 16 g C m−2.
Xiaoyu Hu, Jinming Ge, Jiajing Du, Qinghao Li, Jianping Huang, and Qiang Fu
Atmos. Meas. Tech., 14, 1743–1759, https://doi.org/10.5194/amt-14-1743-2021, https://doi.org/10.5194/amt-14-1743-2021, 2021
Short summary
Short summary
Cloud radars are powerful instruments that can probe detailed cloud structures. However, radar echoes in the lower atmosphere are always contaminated by clutter. We proposed a multi-dimensional probability distribution function that can effectively discriminate low-level clouds from clutter by considering their different features in several variables. We applied this method to the radar observations at the SACOL site and found the results have good agreement with lidar detection.
Yueming Cheng, Tie Dai, Jiming Li, and Guangyu Shi
Atmos. Chem. Phys., 20, 15307–15322, https://doi.org/10.5194/acp-20-15307-2020, https://doi.org/10.5194/acp-20-15307-2020, 2020
Short summary
Short summary
In this paper we present the analysis of the aerosol vertical features observed by CATS collected from 2015 to 2017 over three selected regions (North China, the Tibetan Plateau, and the Tarim Basin) over different timescales. This comprehensive information provides insights into the seasonal variations and diurnal cycles of the aerosol vertical features across East Asia.
Cited articles
Amiri-Farahani, A., Allen, R. J., Neubauer, D., and Lohmann, U.: Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect, Atmos. Chem. Phys., 17, 6305–6322, https://doi.org/10.5194/acp-17-6305-2017, 2017.
Betts, A. K. and Ridgway, W.: Climatic equilibrium of the atmospheric
convective boundary layer over a tropical ocean, J. Atmos. Sci., 46,
2621–2641, https://doi.org/10.1175/1520-0469(1989)046<2621:CEOTAC>2.0.CO;2, 1989.
Bender, F. A. M., Charlson, R. J., Ekman, A. M. L., and Leahy, L. V.:
Quantification of Monthly Mean Regional-Scale Albedo of Marine Stratiform
Clouds in Satellite Observations and GCMs, J. Appl. Meteorol. Clim., 50,
2139–2148, https://doi.org/10.1175/jamc-d-11-049.1, 2011.
Bender, F. A. M., Engström, A., and Karlsson, J.: Factors Controlling
Cloud Albedo in Marine Subtropical Stratocumulus Regions in Climate Models
and Satellite Observations, J. Climate, 29, 3559–3587,
https://doi.org/10.1175/Jcli-D-15-0095.1, 2016.
Bender, F. A. M., Engström, A., Wood, R., and Charlson, R. J.:
Evaluation of Hemispheric Asymmetries in Marine Cloud Radiative Properties,
J. Climate, 30, 4131–4147, https://doi.org/10.1175/Jcli-D-16-0263.1, 2017.
Bender, F. A. M., Frey, L., McCoy, D. T., Grosvenor, D. P., and Mohrmann, J.
K.: Assessment of aerosol–cloud–radiation correlations in satellite
observations, climate models and reanalysis, Clim. Dynam., 52, 4371–4392,
https://doi.org/10.1007/s00382-018-4384-z, 2019.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in:
Climate change 2013: the physical science basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA, 2013.
CERES Science Team: Single Scanner Footprint (SSF), available at: https://ceres.larc.nasa.gov/data/#single-scanner-footprint-ssf (last access: 25 June 2021), 2019.
Chen, Y. C., Christensen, M. W., Stephens, G. L., and Seinfeld, J. H.:
Satellite-based estimate of global aerosol-cloud radiative forcing by marine
warm clouds, Nat. Geosci., 7, 643–646, https://doi.org/10.1038/NGEO2214,
2014.
Christensen, M. W., Carrio, G. G., Stephens, G. L., and Cotton, W. R.:
Radiative Impacts of Free-Tropospheric Clouds on the Properties of Marine
Stratocumulus, J. Atmos. Sci., 70, 3102–3118,
https://doi.org/10.1175/jas-d-12-0287.1, 2013.
Das, S., Harshvardhan, H., Bian, H., Chin, M., Curci, G., Protonotariou, A.
P., Mielonen, T., Zhang, K., Wang, H., and Liu, X.: Biomass burning aerosol
transport and vertical distribution over the South African-Atlantic region,
J. Geophys. Res., 122, 6391–6415, https://doi.org/10.1002/2016jd026421,
2017.
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D.,
Nguyen, C., Wielicki, B. A., Young, D. F., and Sun, M.: Geostationary
Enhanced Temporal Interpolation for CERES Flux Products, J. Atmos. Ocean
Tech., 30, 1072–1090, https://doi.org/10.1175/jtech-d-12-00136.1, 2013.
Doherty, O. M. and Evan, A. T.: Identification of a new dust-stratocumulus
indirect effect over the tropical North Atlantic, Geophys. Res. Lett., 41,
6935–6942, https://doi.org/10.1002/2014gl060897, 2014.
Elsaesser, G. S., O'Dell, C. W., Lebsock, M. D., Bennartz, R., Greenwald, T.
J., and Wentz, F. J.: The Multisensor Advanced Climatology of Liquid Water
Path (MAC-LWP), J. Climate, 30, 10193–10210,
https://doi.org/10.1175/jcli-d-16-0902.1, 2017.
Dong, X., Xi, B., Kennedy, A., Minnis, P., and Wood, R.: A 19-Month Record
of Marine Aerosol- Cloud-Radiation Properties Derived from DOE ARM Mobile
Facility Deployment at the Azores. Part I: Cloud Fraction and Single-Layered
MBL Cloud Properties, J. Climate, 27, 3665–3682,
https://doi.org/10.1175/jcli-d-13-00553.1, 2014.
Douglas, A. and L'Ecuyer, T.: Quantifying variations in shortwave aerosol–cloud–radiation interactions using local meteorology and cloud state constraints, Atmos. Chem. Phys., 19, 6251–6268, https://doi.org/10.5194/acp-19-6251-2019, 2019.
Eastman, R. and Wood, R.: The Competing Effects of Stability and Humidity
on Subtropical Stratocumulus Entrainment and Cloud Evolution from a
Lagrangian Perspective, J. Atmos. Sci., 75, 2563–2578,
https://doi.org/10.1175/jas-d-18-0030.1, 2018.
Engström, A. and Ekman, A. M. L.: Impact of meteorological factors on
the correlation between aerosol optical depth and cloud fraction, Geophys.
Res. Lett., 37, L18814, https://doi.org/10.1029/2010gl044361, 2010.
Engström, A., Bender, F. A. M., and Karlsson, J.: Improved
Representation of Marine Stratocumulus Cloud Shortwave Radiative Properties
in the CMIP5 Climate Models, J. Climate, 27, 6175–6188,
https://doi.org/10.1175/jcli-d-13-00755.1, 2014.
Engström, A., Bender, F. A. M., Charlson, R. J., and Wood, R.: The
nonlinear relationship between albedo and cloud fraction on near-global,
monthly mean scale in observations and in the CMIP5 model ensemble, Geophys.
Res. Lett., 42, 9571–9578, https://doi.org/10.1002/2015GL066275, 2015.
ESGF: ESGF@DOE/LLNL, available at: https://esgf-node.llnl.gov/projects/esgf-llnl/ (last access: 25 June 2021), 2019.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Frey, L., Bender, F. A.-M., and Svensson, G.: Cloud albedo changes in response to anthropogenic sulfate and non-sulfate aerosol forcings in CMIP5 models, Atmos. Chem. Phys., 17, 9145–9162, https://doi.org/10.5194/acp-17-9145-2017, 2017.
Fuchs, J., Cermak, J., and Andersen, H.: Building a cloud in the southeast Atlantic: understanding low-cloud controls based on satellite observations with machine learning, Atmos. Chem. Phys., 18, 16537–16552, https://doi.org/10.5194/acp-18-16537-2018, 2018.
Greenwald, T. J.: A 2 year comparison of AMSR-E and MODIS cloud liquid
water path observations, Geophys. Res. Lett., 36, L20805,
https://doi.org/10.1029/2009GL040394, 2009.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy,
L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Georgakakos, K. P. and Bras, R. L.: A hydrologically useful station
precipitation model: 1. Formulation, Water Resour. Res., 20, 1585–1596,
https://doi.org/10.1029/WR020i011p01585, 1984.
George, R. C. and Wood, R.: Subseasonal variability of low cloud radiative properties over the southeast Pacific Ocean, Atmos. Chem. Phys., 10, 4047–4063, https://doi.org/10.5194/acp-10-4047-2010, 2010.
Global Modeling and Assimilation Office: MERRA-2, available at: https://disc.gsfc.nasa.gov/datasets?keywords=MERRA-2 (last access: 25 June 2021), 2019.
Gryspeerdt, E., Goren, T., Sourdeval, O., Quaas, J., Mülmenstädt, J., Dipu, S., Unglaub, C., Gettelman, A., and Christensen, M.: Constraining the aerosol influence on cloud liquid water path, Atmos. Chem. Phys., 19, 5331–5347, https://doi.org/10.5194/acp-19-5331-2019, 2019.
Han, Q. Y., Rossow, W. B., Zeng, J., and Welch, R.: Three different
behaviors of liquid water path of water clouds in aerosol-cloud
interactions, J. Atmos. Sci., 59, 726–735,
https://doi.org/10.1175/1520-0469(2002)059<0726:tdbolw>2.0.co;2, 2002.
Herbert, R. J., Bellouin, N., Highwood, E. J., and Hill, A. A.: Diurnal cycle of the semi-direct effect from a persistent absorbing aerosol layer over marine stratocumulus in large-eddy simulations, Atmos. Chem. Phys., 20, 1317–1340, https://doi.org/10.5194/acp-20-1317-2020, 2020.
Hersbach, H., Bell, W., Berrisford, P., Horányi, A., Joaquí, M.-S.,
Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D.: Global
Reanalysis: Goodbye ERA-Interim, Hello ERA5, ECMWF Newslett., 159, 17–24,
2019.
Huang, J. and Yi, Y.: Inversion of a nonlinear dynamical model from the
observation, Science in China, 34B, 1246–1251, 1991.
Huang, J. P., Huang, J. P., Liu, X. Y., Li, C. Y., Ding, L., and Yu, H. P.:
The global oxygen budget and its future projection, Sci. Bull., 63,
1180–1186, https://doi.org/10.1016/j.scib.2018.07.023, 2018.
Huang, J. P., Liu, X. Y., He, Y. S., Shen, S. Z., Hou, Z. Q., Li, S. G., Li,
C. Y., Yao, L. J., and Huang, J. P.: The oxygen cycle and a habitable Earth,
Sci. China Earth Sci., 64, 511–528,
https://doi.org/10.1007/s11430-020-9747-1, 2021.
Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J.-T.: Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations, Atmos. Chem. Phys., 11, 3137–3157, https://doi.org/10.5194/acp-11-3137-2011, 2011.
Jian, B., Li, J., Zhao, Y., He, Y., Wang, J., and Huang, J.: Evaluation of
the CMIP6 planetary albedo climatology using satellite observations, Clim.
Dynam., 54, 5145–5161, https://doi.org/10.1007/s00382-020-05277-4, 2020.
Jiang, J. H., Su, H., Huang, L., Wang, Y., Massie, S., Zhao, B., Omar, A.,
and Wang, Z.: Contrasting effects on deep convective clouds by different
types of aerosols, Nat. Commun., 9, 3874,
https://doi.org/10.1038/s41467-018-06280-4, 2018.
Johnson, B. T., Shine, K. P., and Forster, P. M.: The semi-direct aerosol
effect: Impact of absorbing aerosols on marine stratocumulus, Q. J. Roy.
Meteor. Soc., 130, 1407–1422, https://doi.org/10.1256/qj.03.61, 2004.
Karydis, V. A., Kumar, P., Barahona, D., Sokolik, I. N., and Nenes, A.: On
the effect of dust particles on global cloud condensation nuclei and cloud
droplet number, J. Geophys. Res., 116, D23204,
https://doi.org/10.1029/2011jd016283, 2011.
Kawai, H., Yukimoto, S., Koshiro, T., Oshima, N., Tanaka, T., Yoshimura, H., and Nagasawa, R.: Significant improvement of cloud representation in the global climate model MRI-ESM2, Geosci. Model Dev., 12, 2875–2897, https://doi.org/10.5194/gmd-12-2875-2019, 2019.
Klein, S. A. and Hartmann, D. L.: THE SEASONAL CYCLE OF LOW STRATIFORM
CLOUDS, J. Climate, 6, 1587–1606,
https://doi.org/10.1175/1520-0442(1993)006<1587:tscols>2.0.co;2, 1993.
Kravitz, B., Wang, H., Rasch, P. J., Morrison, H., and Solomon, A. B.:
Process-model simulations of cloud albedo enhancement by aerosols in the
Arctic, Philos. T. R. Soc. A., 372, 20140052, https://doi.org/10.1098/rsta.2014.0052,
2014.
Latham, J., Rasch, P., Chen, C.-C., Kettles, L., Gadian, A., Gettelman, A.,
Morrison, H., Bower, K., and Choularton, T.: Global temperature
stabilization via controlled albedo enhancement of low-level maritime
clouds, Philos. T. R. Soc. A., 366, 3969–3987,
https://doi.org/10.1098/rsta.2008.0137, 2008.
Levin, Z., Ganor, E., and Gladstein, V.: The effects of desert particles
coated with sulfate on rain formation in the eastern Mediterranean, J. Appl.
Meteorol., 35, 1511–1523,
https://doi.org/10.1175/1520-0450(1996)035<1511:teodpc>2.0.co;2, 1996.
Li, J., Jian, B., Huang, J., Hu, Y., Zhao, C., Kawamoto, K., Liao, S., and
Wu, M.: Long-term variation of cloud droplet number concentrations from
space-based Lidar, Remote Sens. Environ., 213, 144–161,
https://doi.org/10.1016/j.rse.2018.05.011, 2018.
Li, J., Jian, B., Zhao, C., Zhao, Y., Wang, J., and Huang, J.: Atmospheric
Instability Dominates the Long-Term Variation of Cloud Vertical Overlap Over
the Southern Great Plains Site, J. Geophys. Res., 124, 9691–9701,
https://doi.org/10.1029/2019jd030954, 2019.
Lin, W. Y., Zhang, M. H., and Loeb, N. G.: Seasonal Variation of the
Physical Properties of Marine Boundary Layer Clouds off the California
Coast, J. Climate, 22, 2624–2638, https://doi.org/10.1175/2008jcli2478.1,
2009.
Loeb, N. G., Priestley, K. J., Kratz, D. P., Geier, E. B., Green, R. N.,
Wielicki, V. A., Hinton, R. O., and Nolan, S. K.: Determination of
unfiltered radiances from the clouds and the Earth's Radiant Energy System
instrument, J. Appl. Meteorol., 40, 822–835,
https://doi.org/10.1175/1520-0450(2001)040<0822:dourft>2.0.co;2, 2001.
Loeb, N. G., Doelling, D. R., Wang, H. L., Su, W. Y., Nguyen, C., Corbett,
J. G., Liang, L. S., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the
Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31, 895–918,
https://doi.org/10.1175/Jcli-D-17-0208.1, 2018.
Lu, C., Liu, Y., Niu, S., and Vogelmann, A. M.: Observed impacts of vertical
velocity on cloud microphysics and implications for aerosol indirect
effects, Geophys. Res. Lett., 39, L21808,
https://doi.org/10.1029/2012gl053599, 2012.
McCoy, D. T., Bender, F. A. M., Mohrmann, J. K. C., Hartmann, D. L., Wood,
R., and Grosvenor, D. P.: The global aerosol-cloud first indirect effect
estimated using MODIS, MERRA, and AeroCom, J. Geophys. Res., 122, 1779–1796,
https://doi.org/10.1002/2016jd026141, 2017.
McCoy, D. T., Bender, F. A.-M., Grosvenor, D. P., Mohrmann, J. K., Hartmann, D. L., Wood, R., and Field, P. R.: Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data, Atmos. Chem. Phys., 18, 2035–2047, https://doi.org/10.5194/acp-18-2035-2018, 2018.
MODIS Science Team: Index of /archive/allData/61/, available at: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61 (last access: 25 June 2021), 2019.
Mueller, R., Trentmann, J., Traeger-Chatterjee, C., Posselt, R., and
Stoeckli, R.: The Role of the Effective Cloud Albedo for Climate Monitoring
and Analysis, Remote Sens., 3, 2305–2320, https://doi.org/10.3390/rs3112305,
2011.
Nam, C., Bony, S., Dufresne, J. L., and Chepfer, H.: The “too few, too
bright” tropical low-cloud problem in CMIP5 models, Geophys. Res. Lett., 39,
L21801, https://doi.org/10.1029/2012gl053421, 2012.
Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A.,
Riedi, J. C., and Frey, R. A.: The MODIS cloud products: Algorithms and
examples from Terra, IEEE T. Geosci. Remote, 41, 459-473,
https://doi.org/10.1109/tgrs.2002.808301, 2003.
Pradelle, F. and Cautenet, G.: Radiative and microphysical interactions
between marine stratocumulus clouds and Saharan dust – 2. Modeling, J.
Geophys. Res., 107, 4413, https://doi.org/10.1029/2000jd000156, 2002.
Pradelle, F., Cautenet, G., and Jankowiak, I.: Radiative and microphysical
interactions between marine stratocumulus clouds and Saharan dust – 1.
Remote sensing observations, J. Geophys. Res., 107, 4412,
https://doi.org/10.1029/2000jd000155, 2002.
Roberts, G. C., Ramana, M. V., Corrigan, C., Kim, D., and Ramanathan, V.:
Simultaneous observations of aerosol-cloud-albedo interactions with three
stacked unmanned aerial vehicles, P. Natl. Acad. Sci. USA, 105,
7370–7375, https://doi.org/10.1073/pnas.0710308105, 2008.
Rosenfeld, D., Rudich, Y., and Lahav, R.: Desert dust suppressing
precipitation: A possible desertification feedback loop, P. Natl. Acad.
Sci. USA, 98, 5975–5980, https://doi.org/10.1073/pnas.101122798, 2001.
Rosenfeld, D., Zhu, Y., Wang, M., Zheng, Y., Goren, T., and Yu, S.:
Aerosol-driven droplet concentrations dominate coverage and water of oceanic
low-level clouds, Science, 363, eaav0566,
https://doi.org/10.1126/science.aav0566, 2019.
Seethala, C., Norris, J. R., and Myers, T. A.: How Has Subtropical
Stratocumulus and Associated Meteorology Changed since the 1980s?*, J.
Climate, 28, 8396–8410, https://doi.org/10.1175/jcli-d-15-0120.1, 2015.
Qiu, Y. M., Zhao, C. F., Guo, J. P., and Li, J. M.: 8-Year ground-based
observational analysis about the seasonal variation of the aerosol-cloud
droplet effective radius relationship at SGP site, Atmos. Environ., 164,
139–146, https://doi.org/10.1016/j.atmosenv.2017.06.002, 2017.
Qu, X., Hall, A., Klein, S. A., and DeAngelis, A. M.: Positive tropical
marine low-cloud cover feedback inferred from cloud-controlling factors,
Geophys. Res. Lett., 42, 7767–7775, https://doi.org/10.1002/2015GL065627,
2015.
Scott, R. C., Myers, T. A., Norris, J. R., Zelinka, M. D., Klein, S. A.,
Sun, M. G., and Doelling, D. R.: Observed Sensitivity of Low-Cloud Radiative
Effects to Meteorological Perturbations over the Global Oceans, J. Climate,
33, 7717–7734, https://doi.org/10.1175/Jcli-D-19-1028.1, 2020.
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020.
Stouffer, R. J., Eyring, V., Meehl, G. A., Bony, S., Senior, C., Stevens,
B., and Taylor, K. E.: CMIP5 Scientific Gaps and Recommendations for CMIP6,
B. Am. Meteorol. Soc., 98, 95–105,
https://doi.org/10.1175/bams-d-15-00013.1, 2017.
Stuart, G. S., Stevens, R. G., Partanen, A.-I., Jenkins, A. K. L., Korhonen, H., Forster, P. M., Spracklen, D. V., and Pierce, J. R.: Reduced efficacy of marine cloud brightening geoengineering due to in-plume aerosol coagulation: parameterization and global implications, Atmos. Chem. Phys., 13, 10385–10396, https://doi.org/10.5194/acp-13-10385-2013, 2013.
Sun, Y. and Zhao, C. F.: Influence of Saharan Dust on the Large-Scale
Meteorological Environment for Development of Tropical Cyclone Over North
Atlantic Ocean Basin, J. Geophys. Res., 125, e2020JD033454, https://doi.org/10.1029/2020JD033454, 2020.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res., 106, 7183–7192,
https://doi.org/10.1029/2000jd900719, 2001.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498, 2012.
Twohy, C. H.: Evaluation of the aerosol indirect effect in marine
stratocumulus clouds: Droplet number, size, liquid water path, and radiative
impact, J. Geophys. Res., 110, D08203, https://doi.org/10.1029/2004jd005116,
2005.
Twomey, S.: The nuclei of natural cloud formation. Part II: The
supersaturation in natural clouds and the variation of cloud droplet
concentration, Geofis. Pura Appl., 243–249,
https://doi.org/10.1007/BF01993560, 1959.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8,
1251–1256, https://doi.org/10.1016/0004-6981(74)90004-3, 1974.
Twomey, S.: Influence of pollution on shortwave albedo of clouds, J. Atmos.
Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Van Weverberg, K., Morcrette, C. J., Petch, J., Klein, S. A., Ma, H. Y.,
Zhang, C., Xie, S., Tang, Q., Gustafson, W. I., Qian, Y., Berg, L. K., Liu,
Y., Huang, M., Ahlgrimm, M., Forbes, R., Bazile, E., Roehrig, R., Cole, J.,
Merryfield, W., Lee, W. S., Cheruy, F., Mellul, L., Wang, Y. C., Johnson,
K., and Thieman, M. M.: CAUSES: Attribution of Surface Radiation Biases in
NWP and Climate Models near the U.S. Southern Great Plains, J. Geophys.
Res., 123, 3612–3644, https://doi.org/10.1002/2017jd027188, 2018.
Wall, C. J., Hartmann, D. L., Thieman, M. M., Smith, W. L., and Minnis, P.:
The Life Cycle of Anvil Clouds and the Top-of-Atmosphere Radiation Balance
over the Tropical West Pacific, J. Climate, 31, 10059–10080,
https://doi.org/10.1175/jcli-d-18-0154.1, 2018.
Wang, H., Rasch, P. J., and Feingold, G.: Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei, Atmos. Chem. Phys., 11, 4237–4249, https://doi.org/10.5194/acp-11-4237-2011, 2011.
Wang, Y. and Zhao, C.: Can MODIS cloud fraction fully represent the diurnal
and seasonal variations at DOE ARM SGP and Manus sites?, J. Geophys. Res.,
122, 329–343, https://doi.org/10.1002/2016jd025954, 2017.
Waquet, F., Peers, F., Ducos, F., Goloub, P., Platnick, S., Riedi, J.,
Tanré, D., and Thieuleux, F.: Global analysis of aerosol properties
above clouds, Geophys. Res. Lett., 40, 5809–5814,
https://doi.org/10.1002/2013gl057482, 2013.
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee III, R. B., Louis
Smith, G., and Cooper, J. E.: Clouds and the Earth's Radiant Energy System
(CERES): An earth observing system experiment, B. Am. Meteorol. Soc., 77,
853–868, 1996.
Wilcox, E. M.: Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol, Atmos. Chem. Phys., 10, 11769–11777, https://doi.org/10.5194/acp-10-11769-2010, 2010.
Wilcox, E. M.: Direct and semi-direct radiative forcing of smoke aerosols over clouds, Atmos. Chem. Phys., 12, 139–149, https://doi.org/10.5194/acp-12-139-2012, 2012.
Wood, R.: Stratocumulus Clouds, Mon. Weather Rev., 140, 2373–2423,
https://doi.org/10.1175/mwr-d-11-00121.1, 2012.
Wood, R. and Bretherton, C. S.: On the relationship between stratiform low
cloud cover and lower-tropospheric stability, J. Climate, 19, 6425–6432,
https://doi.org/10.1175/Jcli3988.1, 2006.
Wood, R., Bretherton, C. S., and Hartmann, D. L.: Diurnal cycle of liquid water path over the subtropical and tropical oceans, Geophys. Res. Lett., 29, 2092, https://doi.org/10.1029/2002GL015371, 2002.
Xie, S. C., Liu, X. H., Zhao, C. F., and Zhang, Y. Y.: Sensitivity of
CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation
Parameterization, J. Climate, 26, 5981–5999,
https://doi.org/10.1175/Jcli-D-12-00517.1, 2013.
Yang, Y., Zhao, C. F., Dong, X. B., Fan, G. C., Zhou, Y. Q., Wang, Y., Zhao,
L. J., Lv, F., and Yan, F.: Toward understanding the process-level impacts
of aerosols on microphysical properties of shallow cumulus cloud using
aircraft observations, Atmos. Res., 221, 27–33,
https://doi.org/10.1016/j.atmosres.2019.01.027, 2019.
Zhao, C. F., Klein, S. A., Xie, S. C., Liu, X. H., Boyle, J. S., and Zhang,
Y. Y.: Aerosol first indirect effects on non-precipitating low-level liquid
cloud properties as simulated by CAM5 at ARM sites, Geophys. Res. Lett., 39,
L08806, https://doi.org/10.1029/2012gl051213, 2012.
Zhao, C. F., Lin, Y. L., Wu, F., Wang, Y., Li, Z. Q., Rosenfeld, D., and
Wang, Y.: Enlarging Rainfall Area of Tropical Cyclones by Atmospheric
Aerosols, Geophys. Res. Lett., 45, 8604–8611,
https://doi.org/10.1029/2018GL079427, 2018.
Zhao, C. F., Chen, Y. Y., Li, J. M., Letu, H. S., Su, Y. F., Chen, T. M.,
and Wu, X. L.: Fifteen-year statistical analysis of cloud characteristics
over China using Terra and Aqua Moderate Resolution Imaging
Spectroradiometer observations, Int. J. Climatol., 39, 2612–2629,
https://doi.org/10.1002/joc.5975, 2019a.
Zhao, C. F., Zhao, L. J., and Dong, X. B.: A Case Study of Stratus Cloud
Properties Using In Situ Aircraft Observations over Huanghua, China, Atmos.,
10, 19, https://doi.org/10.3390/atmos10010019, 2019b.
Zuidema, P., Sedlacek, A. J., III, Flynn, C., Springston, S., Delgadillo,
R., Zhang, J., Aiken, A. C., Koontz, A., and Muradyan, P.: The Ascension
Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky,
Geophys. Res. Lett., 45, 4456–4465, https://doi.org/10.1002/2017gl076926,
2018.
Short summary
We evaluate the performance of the AMIP6 model in simulating cloud albedo over marine subtropical regions and the impacts of different aerosol types and meteorological factors on the cloud albedo based on multiple satellite datasets and reanalysis data. The results show that AMIP6 demonstrates moderate improvement over AMIP5 in simulating the monthly variation in cloud albedo, and changes in different aerosol types and meteorological factors can explain ~65 % of the changes in the cloud albedo.
We evaluate the performance of the AMIP6 model in simulating cloud albedo over marine...
Altmetrics
Final-revised paper
Preprint