Articles | Volume 21, issue 2
https://doi.org/10.5194/acp-21-951-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-951-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aircraft-based inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions
Xueying Yu
Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, Minnesota 55108, United States
Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, Minnesota 55108, United States
Kelley C. Wells
Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, Minnesota 55108, United States
Daven K. Henze
Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
Hansen Cao
Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
Timothy J. Griffis
Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, Minnesota 55108, United States
Eric A. Kort
Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States
Genevieve Plant
Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States
Malte J. Deventer
Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, Minnesota 55108, United States
ANECO Institut für Umweltschutz GmbH & Co, 21079 Hamburg,
Germany
Randall K. Kolka
Northern Research Station, US Department of Agriculture Forest
Service, Grand Rapids, Minnesota 55744, United States
D. Tyler Roman
Northern Research Station, US Department of Agriculture Forest
Service, Grand Rapids, Minnesota 55744, United States
Kenneth J. Davis
Department of Meteorology, The Pennsylvania State University,
University Park, Pennsylvania 16802, United States
Ankur R. Desai
Department of Atmospheric and Oceanic Sciences, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
Bianca C. Baier
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, United States
Global Monitoring Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, United States
Kathryn McKain
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, United States
Global Monitoring Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, United States
Alan C. Czarnetzki
Department of Earth and Environmental Sciences, University of
Northern Iowa, Cedar Falls, Iowa 50614, United States
A. Anthony Bloom
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California 91109, United States
Data sets
Airborne measurements from the GEM study D. B. Millet and X. Yu https://doi.org/10.13020/f50r-zh70
Short summary
Methane concentrations have doubled since 1750. The US Upper Midwest is a key region contributing to such trends, but sources are poorly understood. We collected and analyzed aircraft data to resolve spatial and timing biases in wetland and livestock emission estimates and uncover errors in inventory treatment of manure management. We highlight the importance of intensive agriculture for the regional and US methane budgets and the potential for methane mitigation through improved management.
Methane concentrations have doubled since 1750. The US Upper Midwest is a key region...
Altmetrics
Final-revised paper
Preprint