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Abstract. We apply airborne measurements across three sea-
sons (summer, winter and spring 2017–2018) in a multi-
inversion framework to quantify methane emissions from the
US Corn Belt and Upper Midwest, a key agricultural and
wetland source region. Combing our seasonal results with
prior fall values we find that wetlands are the largest regional
methane source (32 %, 20 [16–23] Gg/d), while livestock
(enteric/manure; 25 %, 15 [14–17] Gg/d) are the largest an-
thropogenic source. Natural gas/petroleum, waste/landfills,
and coal mines collectively make up the remainder. Opti-
mized fluxes improve model agreement with independent
datasets within and beyond the study timeframe. Inversions
reveal coherent and seasonally dependent spatial errors in
the WetCHARTs ensemble mean wetland emissions, with
an underestimate for the Prairie Pothole region but an over-
estimate for Great Lakes coastal wetlands. Wetland extent
and emission temperature dependence have the largest in-
fluence on prediction accuracy; better representation of cou-

pled soil temperature–hydrology effects is therefore needed.
Our optimized regional livestock emissions agree well with
the Gridded EPA estimates during spring (to within 7 %)
but are ∼ 25 % higher during summer and winter. Spatial
analysis further shows good top-down and bottom-up agree-
ment for beef facilities (with mainly enteric emissions) but
larger (∼ 30 %) seasonal discrepancies for dairies and hog
farms (with >40 % manure emissions). Findings thus sup-
port bottom-up enteric emission estimates but suggest errors
for manure; we propose that the latter reflects inadequate
treatment of management factors including field application.
Overall, our results confirm the importance of intensive an-
imal agriculture for regional methane emissions, implying
substantial mitigation opportunities through improved man-
agement.
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1 Introduction

Atmospheric methane (CH4) has increased global radiative
forcing by 0.97 W/m2 since 1750 (IPCC, 2013), making it
the most important anthropogenic greenhouse gas after car-
bon dioxide (CO2). Methane concentrations stabilized dur-
ing the 1990s but resumed their increasing trend post-2007,
with unclear causation (Kirschke et al., 2013; McNorton et
al., 2018; Saunois et al., 2016; Thompson et al., 2018; Turner
et al., 2017, 2019; Dlugokencky et al., 2011). Prior work sug-
gests that US emission increases account for 20 %–60 % of
the renewed global methane growth rate, with trends espe-
cially large in the central US (Alvarez et al., 2018; Franco
et al., 2016; Helmig et al., 2016; Maasakkers et al., 2019;
Sheng et al., 2018a; Turner et al., 2016). Quantifying emis-
sions in this area is thus crucial for understanding the North
American methane budget and its role in driving global
trends. Here we employ new measurements from the GEM
(Greenhouse Emissions in the Midwest) aircraft campaign
in a multi-inversion framework to develop constraints on
methane emissions from the Upper Midwest region.

Recent studies imply uncertainties in the magnitude and
distribution of North American methane emissions (Kirschke
et al., 2013; Miller and Michalak, 2017; Dlugokencky et al.,
2011). For example, Turner et al. (2015) found, based on
measurements from the Greenhouse Gases Observing SATel-
lite (GOSAT), that the aggregated 2009–2011 US flux is
1.6× too low in the Emissions Database for Global Atmo-
spheric Research (EDGAR v4.2, 2011; estimated US source
of 26 Tg/yr). However, subsequent work also using GOSAT
retrievals (Maasakkers et al., 2019) concluded that the US
flux is well-represented in the more recent Gridded Envi-
ronmental Protection Agency inventory (GEPA Maasakkers
et al., 2016) – with a US flux just 12 % higher than that of
EDGAR v4.2 – and argued that the inferred EDGAR biases
may instead reflect spatial errors in that inventory. Surface
and aircraft-based inversion studies have further pointed to
EPA bottom-up underestimates both nationally (Miller et al.,
2013; Kort et al., 2008; Xiao et al., 2008; Karion et al., 2013;
Wecht et al., 2014; Caulton et al., 2014) and regionally (Chen
et al., 2018).

Wetlands are thought to be the single largest North Amer-
ican methane source (∼ 30 % of the total flux; Turner et al.,
2015), but there are major uncertainties in the magnitude and
spatiotemporal distribution of these emissions (Melton et al.,
2013; Wania et al., 2013; Bruhwiler et al., 2014). For exam-
ple, recent studies suggest an overestimate of wetland fluxes
in Canada and the southeastern US (Miller et al., 2016; Sheng
et al., 2018b) and that western Canadian and northern US
wetland emissions have a broader spatial distribution than is
predicted by models (Miller et al., 2014). Northern wetland
emissions have strong seasonality, with a typical onset in late
spring, peak in July–August, and decline in the fall with the
onset of freezing. Bottom-up models have been shown to
both underpredict and overpredict the width of this seasonal

emission window, depending on location (Pickett-Heaps et
al., 2011; Pugh et al., 2018; Knox et al., 2019; Peltola et al.,
2019).

Livestock are the second-largest North American methane
source, accounting for an estimated∼ 25 % of the total conti-
nental flux (∼ 35 % of the anthropogenic flux) during 2009–
2011 (Turner et al., 2015). However, enteric and manure
emissions vary strongly with animal type, diet, management,
and environmental factors (Niu et al., 2018; Charmley et al.,
2016; Montes et al., 2013; Grant et al., 2015; Lassey, 2007;
VanderZaag et al., 2014), and top-down studies have revealed
large uncertainties in the resulting source estimates. For ex-
ample, analyses of space-based, aircraft, and tall tower ob-
servations (Wecht et al., 2014; Miller et al., 2013) imply
a 40 %–100 % underestimate of North American livestock
emissions in the EDGAR v4.2 and 2013 EPA inventories.
Tall tower measurements similarly point to a 1.8-fold GEPA
livestock emission underestimate for the US Midwest (Chen
et al., 2018). Space-based methane retrievals from GOSAT
imply that US emissions rose by ∼ 20 % between 2010 and
2016, with a possible contribution from growing Midwest
swine manure emissions (Sheng et al., 2018a). Previous stud-
ies have also revealed uncertainties in the spatial allocation
of US livestock methane emissions: the spatial R2 between
EDGAR v4.2 FT2010 and GEPA is only 0.5 for enteric fer-
mentation and 0.1 for manure management, with the mis-
match for the latter most significant in the Upper Midwest
(Hristov et al., 2017). A facility-based analysis of concen-
trated animal feeding operations in this area based on GEM
airborne data likewise pointed to spatial and temporal errors
in bottom-up manure emissions (Yu et al., 2020).

The Upper Midwest is a crucial region for atmospheric
methane: its extensive wetlands and > 700 million live-
stock (USDA-NASS, 2018) have been estimated to ac-
count for 30 % and 35 % of the total North American
methane flux from wetlands and animal agriculture, re-
spectively (Maasakkers et al., 2016; Bloom et al., 2017).
The GEM study included extensive aircraft-based measure-
ments of methane and related species across the Upper
Midwest during three seasons (August 2017, January 2018,
and May–June 2018, Fig. 1). The airborne sampling tar-
geted wetland and agriculture emissions in particular, afford-
ing a unique opportunity to advance understanding of these
sources. Here, we employ high-resolution chemical transport
modeling (GEOS-Chem chemical transport model (CTM) at
0.25◦× 0.3125◦) in a multi-inversion framework (combining
sector-based, Gaussian Mixture Model and adjoint 4D-Var
analyses) to interpret the GEM datasets in terms of regional
methane sources, with a focus on livestock and wetlands.

Atmos. Chem. Phys., 21, 951–971, 2021 https://doi.org/10.5194/acp-21-951-2021



X. Yu et al.: Aircraft-based inversions quantify the importance of wetlands 953

Figure 1. GEM flight tracks and additional datasets used in this study. Panel (a) shows Pacific flight tracks for the ATom3 and ATom4
campaigns used for evaluating modeled boundary and initial conditions. Also shown are the ACT-America flight tracks (C130 in cyan, B200
in red) used here for posterior model evaluation. The inner red box (40–50◦ N, 87–100◦W) shows the GEM flight region that is expanded
in (b–d), the black box (35–55◦ N, 80–105◦W) shows the Upper Midwest analysis region employed for source inversions, and the blue box
(9.75–60◦ N, 60–130◦W) demarks the GEOS-Chem nested North American domain. The right panels show the GEM flight tracks colored
by observed methane mixing ratios and superimposed on the prior annual bottom-up emissions described in-text. Also shown are locations
for the radiosonde launches and tall towers employed here, along with the Bog Lake peatland eddy flux site.

2 Data and methods

2.1 GEM flights and measurement payload

The GEM aircraft campaign was designed to survey regional
methane sources via downwind and upwind transects. Fig-
ure 1 shows sampling tracks, including 23 flights (156 h)
across three seasons (GEM1: 8 flights, 12–24 August 2017;
GEM2: 7 flights, 17–28 January 2018; GEM3: 8 flights,
21 May–2 June 2018). Flights ranged from 4–8 h in duration
(mean: 6 h) and took place in the daytime mixed layer (be-
tween 10:00 and 19:00 local standard time, 200–600 m a.g.l.)
onboard a Mooney aircraft with ∼ 280 km/h boundary layer
cruise speed (Scientific Aviation Inc.). Tracks were selected
and optimized on the day of flight (avoiding light, variable,
or shifting winds; poorly developed mixed layers; and frontal
systems) to minimize analysis errors due to uncertain mete-
orology. Along with mixed-layer surveying, each flight in-
cluded 1–2 vertical profiles to characterize the atmosphere’s
vertical structure from the surface to lower free troposphere.
The GEM flights also included extensive point source char-
acterization as described by Yu et al. (2020).

A cavity ring-down spectrometer (CRDS G2301 for
GEM1, G2210-m for GEM2 and GEM3; Picarro Inc., USA)
was deployed on the aircraft to quantify methane, ethane
(C2H6, GEM2 and GEM3 only), water vapor (H2O) and car-
bon dioxide (CO2) mole fractions at 1 Hz. Ground-based cal-
ibrations employed compressed ambient-level gas cylinders
traceable to National Oceanic and Atmospheric Administra-
tion (NOAA) Global Monitoring Laboratory (GML) stan-
dards on the WMO X2004A CH4 calibration scale. The in-

strumental precision for methane is <1 ppb, and the over-
all accuracy is estimated at <3.5 ppb based on the expanded
uncertainties for the calibration standard. We use 1 min av-
eraged observations here to constrain regional fluxes. Addi-
tional onboard observations included nitrous oxide (N2O),
carbon monoxide (CO), H2O, and CO2 mole fractions by
continuous-wave tunable infrared laser absorption spectrom-
etry (0.5 Hz, Aerodyne Research Inc., USA) as described
by Gvakharia et al. (2018); ozone (O3) mole fractions
(0.2 Hz; dual-beam ultraviolet spectrometer, model 205, 2B
Technologies Inc., USA); temperature and relative humidity
(1 Hz; model HMP60, Vaisala Corp., Finland); and GPS lo-
cation, wind speed and direction, ambient pressure, and other
relevant flight parameters as described by Yu et al. (2020).

2.2 Forward modeling framework

2.2.1 GEOS-Chem methane simulation and prior
emissions

We use the GEOS-Chem CTM (v11-02; http://acmg.seas.
harvard.edu/geos, last access: 11 January 2021) and its ad-
joint (v35) to optimize regional methane emissions. Sim-
ulations are performed on a nested 0.25◦× 0.3125◦ grid
over North America (9.75–60◦ N, 60–130◦W; Fig. 1) using
GEOS-FP meteorological fields from the National Aeronau-
tics and Space Administration (NASA) Global Modeling and
Assimilation Office (GMAO, 2013), with 5 and 10 min time
steps for transport and emissions, respectively. The 3-hourly
dynamic boundary conditions (BC) are from global simula-
tions at 2◦× 2.5◦ and bias-corrected as described later. Ini-
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tial conditions are obtained from a 25-year global spin-up
at 2◦× 2.5◦ (bias-corrected in the same manner), followed
by a 30 d high-resolution (0.25◦× 0.3125◦) spin-up over our
nested domain.

Prior methane emissions in the model are as follows. Wet-
land emissions use the WetCHARTs ensemble mean (Bloom
et al., 2017), uniformly scaled up by 10 % to match the
global estimate from Kirschke et al. (2013). Anthropogenic
emissions use the GEPA inventory (Maasakkers et al., 2016)
over the US (which includes seasonally varying livestock
and rice emissions and aseasonal fossil fuel, waste, and in-
dustrial emissions). Anthropogenic emissions elsewhere are
based on EDGAR v4.3.2 (2017), except Canadian and Mex-
ican oil and gas emissions, which use CanMex (Sheng et al.,
2017). Emissions from biomass burning use the Quick Fire
Emissions Dataset (QFED) (Darmenov and Silva, 2015), and
those from geological seeps and termites follow Maasakkers
et al. (2019) and Fung et al. (1991), respectively. Simulations
include a set of tagged tracers to track methane from relevant
source sectors as detailed in Sect. 2.3.

Our analyses focus on the Upper Midwest, defined here
to include the north central US and south central Canada re-
gion shown in Fig. 1. Figure 2 maps the prior emissions for
summer, winter and spring. According to the above invento-
ries, wetlands (36 % of the total annual flux) and livestock
(23 %) represent the two largest regional methane sources.
Natural gas and petroleum systems, wastewater and land-
fills, coal mines, and other sources contribute the remain-
ing 15 %, 12 %, 9 %, and 5 %, respectively. Seasonality in
the prior emissions is dominated by wetlands; these vary
from 39 Gg/d in July–August 2017 (GEM1) to 4 Gg/d in Jan-
uary 2018 (GEM2), with an onset in late May during the
GEM3 timeframe. The prior livestock emissions vary from
17 Gg/d in July–August 2017 (GEM1) to 11 Gg/d in Jan-
uary 2018 (GEM2) due to the temperature-dependent manure
source. Figure 2 shows that wetland emissions are concen-
trated in the north of the Upper Midwest domain, whereas
livestock and other anthropogenic emissions occur predom-
inantly to the south. This spatial separation provides an im-
portant advantage for resolving source contributions in our
inversions.

The major atmospheric methane sink (90 % of the total
loss) is oxidation by hydroxyl radical (OH), computed in the
model using archived 3-D monthly OH fields from a full-
chemistry simulation (v5-07-08). Other loss processes in-
clude stratospheric oxidation (6 % of the total sink), com-
puted using archived monthly loss frequencies from the
NASA Global Modeling Initiative (Murray et al., 2013); soil
absorption (3 %), computed following Fung et al. (1991); and
tropospheric oxidation by chlorine (Cl, 2 %), computed using
archived 3-D monthly Cl fields from Sherwen et al. (2016).
The resulting global tropospheric methane lifetime in our
simulations is 12 years.

2.2.2 Evaluating model boundary and initial conditions

Given the large atmospheric methane burden (1850–
1950 ppb) relative to the magnitude of North American en-
hancements (up to 200 ppb in our prior simulations), careful
background evaluation is needed to avoid a biased source op-
timization. We therefore use measurements over the remote
Pacific from the Atmospheric Tomography Mission (ATom;
flight tracks shown in Fig. 1) to evaluate and correct the
model boundary and initial conditions. ATom featured pole-
to-pole sampling with continuous vertical profiling (0.2–
12 km) and onboard measurements including methane (Pi-
carro model G2401m, Picarro Inc., USA) and a wide suite of
other atmospheric species (Wofsy et al., 2018).

Figure S1 compares tropospheric background methane
measurements (represented as 0.1 quantiles within 1◦ lat-
itude bins) from ATom3 (September–October 2017; flight
altitudes ≤ 10 km) and ATom4 (April–May 2018; flight al-
titudes ≤ 8 km) with GEOS-Chem predictions along the
flight tracks. The model–measurement background differ-
ence over North American latitudes averages 5.4 ppb (0.3 %)
for ATom3 and 9.2 ppb (0.5 %) for ATom4. We correct the
model boundary and initial conditions using a smoothed
spline fit of this 0.1 quantile difference to latitude, with
GEM1 (July–August 2017) and GEM2 (January 2018) cor-
rected based on ATom3 and GEM3 (May–June 2018) cor-
rected based on ATom4.

Finally, as described later we assess the potential impact of
any residual model background errors through a set of sensi-
tivity inversions in which the bias-corrected boundary condi-
tions are included in the state vector for further optimization.
Results are described in Sect. 2.5 and employ a 0.4 % back-
ground error standard deviation based on the above model–
measurement disparities.

2.2.3 Assessing meteorological uncertainties

We use two approaches to assess the potential impacts
of model transport errors on our findings. First, we test
whether a misrepresentation of regional-scale synoptic trans-
port could bias our inversion results by evaluating the op-
timized model against independent datasets from different
years, as described in Sect. 2.4. Second, we assess model
uncertainties in vertical mixing using planetary boundary
layer (PBL) depth estimates derived from balloon-based
radiosonde profiles in the Integrated Global Radiosonde
Archive Version 2 (IGRA v2). We use 00:00 UTC (18:00 or
19:00 local standard time) sonde launch data from six sites in
the Upper Midwest (Fig. 1, red triangles) during August 2017
(GEM1), January 2018 (GEM2), and May 2018 (GEM3) in
this analysis. Depending on season, the 00:00 UTC sound-
ing can occur after the collapse of the daytime mixed layer,
but the preceding day’s PBL depth can still generally be de-
termined from vertical temperature and dew point transitions
atop the residual layer. The resulting PBL estimates are then
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Figure 2. Prior methane emissions in the Upper Midwest for the GEM 1–3 flight periods (GEM1 – summer, 20 July–24 August 2017; GEM2
– winter, 3–28 January 2018; GEM3 – spring, 7 May–2 June 2018). Emission inventories are as described in the text. The black box indicates
the inversion domain.

compared with the mean midday (12:00–16:00) value in the
model. Figure S2 shows that the resulting model PBL biases
average less than 10 %, with mean model:measurement ra-
tios of 0.98, 0.97 and 0.90 for summer, winter and spring, re-
spectively. While the GEOS-FP daytime mixing heights were
shown previously to be biased high (by 30 %–50 %) over the
US Southeast during summer (Millet et al., 2015), we find
here that no such bias manifests over the Upper Midwest.

2.3 Inverse modeling framework

We quantify methane emissions in the Upper Midwest us-
ing a multi-inversion framework that combines (1) sector-
based analytical inversions, with the prior spatial distribution
of emissions taken as a hard constraint; (2) spatial and sec-
toral clustering of grid cells using a Gaussian Mixture Model
(GMM), with subsequent analytical optimization; and (3) ap-
plication of the GEOS-Chem adjoint to spatially optimize
fluxes on the 0.25◦× 0.3125◦ model grid. The above inver-

sions employ widely differing assumptions and constraints,
and together they allow us to identify robust aspects of the
derived methane flux fields and quantify the sensitivity of
results to these assumptions. We perform the above inver-
sions separately for each season (summer: GEM1; winter:
GEM2; spring: GEM3). Inversion performance is discussed
in Sect. 2.5.

2.3.1 Cost function and error specification

All inversions in this study optimize methane emissions by
minimizing the Bayesian cost function J (x):

J (x)= (x− xa)
T S−1

a (x− xa)+ γ (y−F (x))
T S−1

O (y−F (x)),

(1)

where x is the state vector to be optimized (defined differ-
ently for the various inversion frameworks), xa is the vector
of prior emissions, Sa is the error covariance matrix for the
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prior emissions, y and F (x) are the observed and simulated
methane mixing ratios along the GEM flight tracks, respec-
tively, and SO is the error covariance matrix for the observ-
ing system (including both measurement and model contri-
butions). The regularization parameter γ balances the prior
and observational contributions to J (x) and is set to 10 for
our base-case analyses as discussed in the Supplement.

Prior errors are prescribed as follows. Wetland emission
uncertainties are based on the standard deviation (σ ) of
the WetCHARTs ensemble on the 0.25◦× 0.3125◦ model
grid, averaging 140 % for summer (σ = 55 Gg/d) and spring
(σ = 34 Gg/d) and 310 % for winter (σ = 12 Gg/d) on the
Upper Midwest domain of Fig. 1. For anthropogenic emis-
sions, we employ a scale-dependent uncertainty (encom-
passing magnitude and displacement uncertainties) follow-
ing Maasakkers et al. (2016); the resulting error standard de-
viation averages 40 %–105 % across sectors over our study
region. For other sources we assume a prior error standard
deviation of 50 % following earlier studies (Maasakkers et
al., 2019; Turner et al., 2015; Wecht et al., 2014; Zhang et
al., 2018; Sheng et al., 2018b). For inversions optimizing the
total methane flux across sectors, the above terms are com-
bined in quadrature as the diagonal elements of the prior error
covariance matrix.

The adjoint 4D-Var inversions derive methane emissions at
0.25◦× 0.3125◦ resolution, and in this case we use a 200 km
length scale (decaying exponentially) to populate the off-
diagonal elements of the prior error covariance matrix. Pre-
vious methane inversions by Wecht et al. (2014) and Monteil
et al. (2013) assumed length scales of 275–500 km to further
smooth the solution. In our case the analytical inversions im-
pose strict error correlation by spatial cluster or source sec-
tor; thus, the adjoint and analytical analyses together span a
wide range of error correlation scenarios. Since the analyti-
cal inversions solve for emissions by sector or by aggregated
region, we employ diagonal prior errors in those cases.

The observational error covariance matrix is constructed
from the residual standard deviation of the observation–prior
model difference across a 2◦× 2◦ moving window (Heald
et al., 2004). The resulting error standard deviation, includ-
ing forward model and instrumental contributions, averages
26 ppb and is assumed diagonal. The overall observing sys-
tem error is hence dominated by forward model and repre-
sentation errors rather than by the < 1 ppb measurement pre-
cision.

2.3.2 Sector-based inversions

We first derive an optimized set of methane emissions by
solving dJ (x)/dx analytically by sector. Seven state vec-
tor elements are thus optimized across the nested model do-
main, representing emissions from (1) wetlands, (2) live-
stock, (3) fossil fuel, (4) rice, (5) biomass burning, (6) other
anthropogenic emissions (landfill, waste water, and other)
and (7) other natural emissions (geological seeps and ter-

mites). Over the timescale and spatial scale of our inversions
the methane emission–concentration relationship is linear,
and we thus construct the Jacobian matrix K using tagged
tracers for each of the above source sectors. The sector-based
inversions offer the advantage of direct source attribution but
with increased potential for aggregation error given the pre-
scribed emission distributions.

2.3.3 GMM inversions

The GMM inversions cluster individual (∼ 25 km) grid cells
with similar emission characteristics, and then analytically
optimize methane fluxes by cluster. GMM is a probabilis-
tic approach that assumes each subpopulation (or cluster)
is a multivariate Gaussian distribution (i.e., each cluster is
ellipsoidal and centered in the feature space) (Turner and
Jacob, 2015). We use an expectation-maximization algo-
rithm (Dempster et al., 1977) to find the maximum-likelihood
GMM classification for seven emission sectors in the Upper
Midwest (wetland, livestock, fossil fuel, rice, biomass burn-
ing, other anthropogenic emissions and other natural emis-
sions) and for total emissions in other regions. In each case
the number of clusters 0 ∈ [1,9] is selected based on the
Bayesian Information Criterion (Schwarz, 1978), with low-
emission clusters (e.g., termites and seeps) grouped to avoid
weak sensitivity in the Jacobian matrix. Sector-specific clus-
ters in the Upper Midwest are defined using eight mean- and
variance-normalized variables: latitude, longitude, grid-level
prior sectoral emissions (three seasons) and grid-level scal-
ing factors (SFs; iteration 8; three seasons) derived from the
adjoint 4D-Var inversions. Emission clusters for other re-
gions are defined using the above eight variables (for total
emissions) and the prior sectoral emission fractions (seven
sectors× three seasons). In this way we identify a total of
28 GMM clusters (Fig. S3), construct the Jacobian matrix
K based on the associated sensitivities in simulations with
tracers tagged to these 28 clusters and solve dJ (x)/dx an-
alytically. The GMM inversions thus derive sector-resolved
methane fluxes along with their general spatial distributions.
They provide a middle ground between the source-resolved
but spatially constrained sector-based inversions above and
the spatially resolved but source-agnostic adjoint 4D-Var in-
versions below.

2.3.4 Adjoint 4D-Var inversions

The adjoint 4D-Var inversions optimize total methane emis-
sions on the 0.25◦× 0.3125◦ model grid via iterative mini-
mization of dJ (x)/dx in a quasi-Newtonian routine (Henze
et al., 2007). The resulting state vector contains 6400 ele-
ments over the Upper Midwest domain (Fig. 1), thus en-
abling detailed spatial corrections to the prior emissions on
a ∼ 25 km scale. To avoid overfitting, we impose a 200 km
prior error correlation length scale as described previously.
We further perform a suite of sensitivity inversions to eval-
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uate the robustness of the derived emissions by varying the
initial scale factors (i.e., employing the GMM-derived scale
factors as the initial guess in the adjoint optimization, re-
ferred to as GMM-ADJ in the following) and by varying the
regulation parameter γ ∈ [0.1,1000] and thereby the weight
of the prior versus observational cost function terms. In all
cases convergence to the final result is ascertained based on
a cost function reduction per iteration <2.5 % of J0.

2.4 Independent measurements for evaluation

We evaluate our top-down methane emission estimates us-
ing the independent airborne and tall tower datasets shown
in Fig. 1 and described below. Datasets are calibrated using
standards traceable to the WMO X2004A calibration scale,
with overall accuracies <4 ppb in all cases (Davis et al.,
2018; Andrews et al., 2017; Richardson et al., 2017). Com-
parisons are based on 5 s (aircraft) and 1 h (tower) averaged
data, with the model sampled at the time and location of mea-
surement.

1. ACT-America airborne measurements. The Atmo-
spheric Carbon and Transport-America (ACT-America)
campaign (Davis et al., 2018; DiGangi et al., 2017)
featured methane measurements from two aircraft plat-
forms, in both cases by CRDS (2401 m, Picarro Inc.,
USA) at 1 Hz frequency (Davis et al., 2018; Baier et al.,
2020). We employ within-PBL methane observations
from ACT-America flights during July–August 2016,
October–November 2017 and April–May 2018 to eval-
uate GEM inversion results for summer, winter and
spring, respectively. The 5 s average measurements and
along-track model output are both aggregated to the
model grid and time step prior to intercomparison.
Flights selected for inversion evaluation occurred over
and downwind of the Upper Midwest (Fig. 1), mainly
sampling the southern portion of our domain. Live-
stock (29 % of the mean simulated enhancement), fossil
fuel (28 %) and wetlands (26 %) are the three largest
methane source influences along these flight tracks
based on the prior GEOS-Chem tagged tracer simula-
tions.

2. WSD tall tower measurements. Methane is measured at
WSD (Wessington, South Dakota; 44.05◦ N, 98.59◦W,
592 m above sea level (a.s.l.); Miles et al., 2018)
by CRDS (CFADS2401 or CFADS2403; Picarro Inc.,
USA) from a single inlet at 60 m above ground level
(a.g.l.). The WSD tower is located in the southwest of
our analysis region, and thus captures the influence of
long-range transport under westerly winds and of Up-
per Midwest emissions under easterly winds. Based on
the prior tagged tracer simulations, wetlands (45 % of
the mean simulated enhancement) and livestock (30 %)
are the two largest methane source influences at WSD

during summer and spring. In winter, livestock (43 %)
and fossil fuel (41 %) sources predominate.

3. KCMP tall tower measurements. Methane is mea-
sured at KCMP (Rosemount, Minnesota; 44.69◦ N,
93.07◦W, 290 m a.s.l.; AMERIFLUX, 2018; Chen et
al., 2018) by tunable-diode laser absorption spec-
troscopy (TGA200A, Campbell Scientific Inc., USA)
from two air sampling inlets at 3 and 185 m a.g.l.
The KCMP tower is located 25 km south of the
Minneapolis–Saint Paul metropolitan area and sam-
ples a predominantly agricultural footprint (easterly,
southerly and westerly winds), along with urban
and wetland influences (northerly winds). The main
methane source influences at KCMP according to
the prior GEOS-Chem simulations are from wetlands
(50 %–56 % of the mean simulated enhancement) and
livestock (22 %) during spring and summer and from
livestock (39 %) and fossil fuel (27 %) during winter.

4. LEF tall tower measurements. Methane is measured
at LEF (Park Falls, Wisconsin; 45.95◦ N, 90.27◦W,
470 m a.s.l.; Desai et al., 2015; Andrews et al., 2017)
by cavity-enhanced absorption spectroscopy (LGR 908-
0001 Fast Methane Analyzer, Los Gatos Research,
Inc., USA). Measurements are performed sequen-
tially from three air sampling inlets at 30, 122 and
396 m a.g.l. based on the protocol described by Andrews
et al. (2014). The LEF tower is located in the northeast
of our analysis region within a mixed wetland and forest
landscape. LEF features a larger influence from natural
emissions than the datasets above: based on our prior
simulations, wetlands contribute >67 % of the mean
methane enhancement during summer and spring (ver-
sus 44 %–56 % for the other tall towers); livestock con-
tribute an additional 15 %. In winter, fossil fuels (34 %)
and livestock (31 %) drive the largest concentration en-
hancements.

In the case of the tall tower measurements, we use two
approaches to evaluate our inversion results. First, we test
the optimized model against tall tower data contempora-
neous with the GEM flights (August 2017, January 2018,
May 2018). Second, we test the optimized model against
tall tower data for the same month in a different year (Au-
gust 2018, January 2017, May 2017). The latter test guards
against overfitting to the GEM data; for example, erro-
neously adjusting emissions to compensate for broadscale
model transport errors during the GEM timeframe. In both
cases we employ daytime (10:00–18:00 LT) data for model–
measurement comparison. The WSD tower was not yet es-
tablished in January 2017, and thus only the later compar-
isons are possible here. In all cases we use observations from
the highest available inlet, with the model sampled at the cor-
responding vertical level, to ensure the widest fetch for sam-
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pling regional emissions while minimizing near-field influ-
ences.

2.5 Inversion performance

All inversions lead to a significant reduction in the cost func-
tion, with the adjoint 4D-Var and GMM inversions tending
to yield larger decreases (36 %–97 %) than the sector-based
inversions (12 %–43 %). The adjoint 4D-Var and GMM in-
versions are able to optimize the spatial distribution of emis-
sions, improving the posterior fit to the data and reducing
aggregation error.

Figure 3 shows that the derived adjustments to the total
regional methane flux are consistent across inversion frame-
works. Specifically, results point to a wintertime emission
underestimate and to very modest (<10 %) springtime cor-
rections. More variable results are obtained during summer;
however, even here the derived total flux adjustments are
≤ 23 % in all cases.

The sector-based and GMM inversions enable direct
source attribution, and we attribute the adjoint-derived emis-
sions based on the prior grid cell source fractions. We find in
this way that (as with the total flux) inversion results are also
generally consistent on a sectoral level: uniformly upward
adjustments are derived in winter, whereas springtime results
point to a wetland overestimate but to only minor correc-
tions for other sources. As before, sectoral results are more
variable during summertime; this point is further discussed
below. Finally, we show later that geographically consistent
emission adjustments are obtained across the set of spatially
explicit inversions, further supporting the robustness of our
findings.

The largest disparities in Fig. 3 occur when the methane
boundary conditions are optimized in the inversion rather
than prescribed: total regional emissions derived in this way
are∼ 15 %–25 % lower than the ensemble mean during sum-
mer and winter. The summertime wetland emissions exhibit
the strongest such sensitivity, reflecting imperfect seasonal
wetland–background separation in the GEM data. In particu-
lar, the only downward adjustments (up to 34 %) to the sum-
mer wetland flux are derived when optimizing boundary con-
ditions; all other inversions yield≤ 24 % positive corrections.
These same disparities account for the largest spread in de-
rived total flux estimates for summer (scale factors of 0.85
versus 1.23). We show below that inclusion of the boundary
conditions in the state vector for optimization does not con-
sistently improve model performance, supporting the prior
use of ATom data for this purpose.

We performed a series of sensitivity inversions to test how
our results depend on the weighting of the observational ver-
sus prior components of the cost function, the prior wetland
emissions, and the prior oil and gas emissions. Results are
detailed in the Supplement and show that our overall findings
are robust across these tests. In the case of the oil and gas sen-
sitivity analysis, we find in particular that (i) our wetland and

livestock estimates are not strongly sensitive to fossil fuel-
related emission errors and that (ii) the derived oil and gas
fluxes are prior-dependent and only weakly constrained by
the GEM observing system.

In nearly every case, the simulations with optimized emis-
sions agree more closely with independent aircraft and tall
tower measurements than the prior simulations do (Fig. 4).
Exceptions include (i) the sector-based inversion versus the
WSD tower data and the GMM-ADJ inversion versus the
KCMP and LEF tower data. The former likely reflects ag-
gregation error in the spatially constrained sectoral optimiza-
tion. The latter suggests overfitting: the GMM-ADJ emission
adjustments improve model performance during the GEM
timeframe (Fig. S4) but not for alternate years (Fig. 4). For all
other inversions, the optimized emissions yield performance
improvements regardless of the evaluation year, providing a
strong argument for the representativeness of the GEM data
and the reliability of our emission adjustments.

Together, the ensemble of inversions provides an envelope
of solutions for assessing the robustness and uncertainty of
the results. Below, we discuss emergent findings that are con-
sistent across inversions and diagnose the associated level of
confidence based on the spread in results.

3 Optimized methane emissions in the Upper Midwest

Averaging our seasonal inversion results with the prior values
for fall, we find that wetlands represent the single largest (32
[29–35] %) methane source in the Upper Midwest at 20 [16–
23] Gg/d. Here and below, reported central values and uncer-
tainties reflect the mean and range across our inversion en-
semble. Anthropogenic sources collectively account for the
remaining 68 [65–71] %, with livestock making the largest
individual contribution (15 [14–17] Gg/d). Smaller but still
significant sources are derived for natural gas and petroleum
systems (10 [9–11] Gg/d), waste and landfills (8 [7–8] Gg/d),
and coal mines (6 [5–7] Gg/d); however, as noted above these
latter estimates are strongly influenced by the prior. Given
the predominant role for livestock and wetlands, we focus on
these sources and proceed to discuss the above findings in
detail by season.

3.1 Summer (GEM1): spatial errors in the prior
wetland flux and an underestimate for livestock

Figure 3 shows that the GEM aircraft data broadly sup-
port the total prior summertime methane emissions for the
Upper Midwest, with a derived correction factor of 1.10
[0.85–1.23]. The resulting posterior seasonal flux is 88 [68–
99] Gg/d. On a sectoral basis, wetlands provide the dominant
seasonal emission source (45 %, 39 [26–49] Gg/d). Livestock
account for 24 % (21 [18–24] Gg/d), with the remaining 31 %
(27 [24–32] Gg/d) including a derived 16 [14–21] Gg/d from
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Figure 3. Methane emission scale factors by sector derived from the multi-inversion analysis over the Upper Midwest (black box in Fig. 1).
Results are shown for GEM1 (a, b; July–August 2017), GEM2 (c, d; January 2018) and GEM3 (e, f; May–June 2018). Matrix columns
show aggregated regional scale factors for total methane emissions (TOTAL), livestock (LIV), wetlands (WTL), and other sources (OTH).
Rows show results from seven individual inversions (for details, see Sect. 2.3) along with the ensemble mean. Bar plots in the top row show
the emission fractions for each source grouping based on the ensemble-mean inversion results. Boundary condition scale factors for the
corresponding sector-based and GMM inversions are 1.00/1.02 (summer), 1.00/1.01 (winter) and 1.00/1.00 (spring), respectively.

Figure 4. Inversion performance evaluation against independent observations from alternate years. Evaluation datasets include airborne mea-
surements from the ACT-America campaign and tall tower measurements from Wessington South Dakota (WSD), Rosemount Minnesota
(KCMP), and Park Falls Wisconsin (LEF). Each matrix displays summary performance statistics for the seven inversions, and for the ensem-
ble mean, with respect to the indicated evaluation dataset. Columns in each matrix show the model mean bias (M-O; ppb), mean absolute
bias (|M-O|; ppb), model:measurement slope (note this is within 1 % of unity in all cases) and model:measurement Pearson’s correlation
coefficient (R). Values are colored by rank for the above criteria. See Sect. 2.4 for details.

fossil fuels (including coal mines) and 8 [8–9] Gg/d from
wastewater.

While the optimized summertime wetland fluxes agree
reasonably well with the WetCHARTs estimate for the re-
gion as a whole (mean scale factor of 1.00 [0.66–1.24]), this
is fortuitous: the inversions point to significant (offsetting)
spatial errors in the prior. Figures 5–7 show that the individ-

ual inversions reveal a wetland underestimate in the north-
west of our domain (reaching 76 mg/m2/d) but an overesti-
mate in the northeast (reaching −77 mg/m2/d). These spatial
patterns are robust across the inversions, but the adjustment
magnitudes differ – for example, the GMM inversion yields
much stronger upward adjustments in the northwest (Figs. 5–
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7). We attribute this spread in part to the imperfect wetland–
background separation discussed earlier.

The northwest wetlands lie predominantly in the Prairie
Pothole region of the eastern Dakotas and Canada and have
highly variable hydrology driven by snowmelt, precipita-
tion, and groundwater inflow. Based on 1997–2009 data,
these wetlands have been declining at a rate of ∼ 25 km2/yr
(USF&WS National Wetlands Inventory, 2019). Areas to the
northeast mainly feature coastal wetlands under the influence
of the Great Lakes, which based on 2004–2009 data have
undergone recent expansion by 11 km2/yr (USF&WS Na-
tional Wetlands Inventory, 2019). Our findings here suggest
that methane emissions from Great Lake coastal wetlands
(while increasing over time) are presently overestimated,
while prairie pothole emissions (while decreasing over time)
are presently underestimated.

We further infer from the GEM aircraft measurements a
summertime underestimate in regional anthropogenic emis-
sions (Fig. 3). In particular, the GEPA prior livestock emis-
sions increase by 24 % (4 Gg/d) in the multi-inversion aver-
age, with scale factors ranging from 1.05–1.41 (1–7 Gg/d).
As seen earlier for wetlands, the lowest scale factors (1.05,
1.07) are obtained when the boundary conditions are allowed
to vary in the optimization, with other inversions point-
ing to a 21 %–41 % (4–7 Gg/d) livestock flux underestimate.
The individual inversions are spatially consistent in showing
the livestock underestimate manifesting most strongly in the
center of the Upper Midwest domain (Iowa/southern Min-
nesota/southern Wisconsin; Figs. 5–7). Anthropogenic emis-
sions other than livestock are adjusted upward through the
inversions by 15 [1–35] % (4 [0–8] Gg/d) in a relatively con-
sistent manner across the region (Figs. 5–7).

3.2 Winter (GEM2): an emission underestimate across
sectors

All inversions indicate that wintertime methane emis-
sions are underestimated in the prior inventories, with an
ensemble-mean scale factor for the total regional flux of 1.27
[1.09–1.38]. We thus obtain a seasonal methane flux of 49
[42–53] Gg/d that is dominated by anthropogenic emissions
from fossil fuel (37 %, 18 [15–20] Gg/d), livestock (29 %, 14
[12–16] Gg/d), and wastewater (20 %, 10 [8–11] Gg/d). Re-
gional wetland emissions are minor (10 %, 5 [4–6] Gg/d) dur-
ing winter, and we therefore focus the following discussion
on anthropogenic sources.

We find that wintertime livestock emissions (enteric fer-
mentation and manure management) are underestimated by
25 % (3 [1–5] Gg/d) in the GEPA inventory and that this dis-
parity is most pronounced over the center of the Upper Mid-
west (Iowa/southern Minnesota/southern Wisconsin). Fig-
ures 5–7 show that this is the same area where we infer a
summertime livestock emission underestimate of compara-
ble magnitude (24 %, 4 Gg/d). In Sect. 4, we examine the

role of enteric fermentation versus manure management in
driving these differences.

The wintertime optimization results further point to a 28
[9–45] % (6 [2–10] Gg/d) underestimate of non-livestock an-
thropogenic emissions, with the largest derived adjustments
in the southeast of our domain where fossil fuel sources
predominate (Figs. 5–7). Sustained high methane observa-
tions during a GEM2 flight over Iowa under southerly winds
(Fig. 1) – with up to 100 ppb model–measurement mis-
matches and co-occurring ethane enhancements – similarly
suggest an underestimate of fossil fuel sources to the south
of the Upper Midwest, as also diagnosed by Barkley et
al. (2019). However, for the purpose of analyses here, we
note that a sensitivity inversion omitting this flight does not
significantly alter our results.

3.3 Spring (GEM3): biased seasonal onset of wetland
emissions

The GEM aircraft data indicate that the prior regional flux
during springtime is unbiased when taken as a whole: Fig. 3
shows that the ensemble mean correction factor is 1.01 with
a range across inversions of 0.95–1.10, resulting in a spring
flux of 63 [59–68] Gg/d. On a sectoral basis, wetlands are the
largest emission source (33 %, 21 [16–25] Gg/d), followed
by livestock (24 %, 15 [14–16] Gg/d), with the remainder in-
cluding derived contributions of 16 [14–17] Gg/d from fossil
fuel and 9 [8–9] Gg/d from wastewater.

While the GEM inversions support the prior springtime
methane fluxes in terms of total regional magnitude, results
point to biases in the bottom-up wetland emissions and their
spatial distribution. Figures 5–7 show that the prior wetland
emissions during spring exhibit spatial errors similar to those
in summer, with an underestimate to the northwest (reach-
ing 15 mg/m2/d) but an overestimate around the Great Lakes
(reaching −48 mg/m2/d). These spatial errors have smaller
peak magnitude (<63 %) than during summer and lead to a
net 15 % wetland flux overestimate for the region as a whole
(4 [−1–8] Gg/d; Fig. 3). Upper Midwest wetland methane
fluxes in the WetCHARTs inventory used here as prior gen-
erally exhibit a sharp onset during late May driven by in-
creasing surface skin temperature (Bloom et al., 2017). The
GEM3 flights were conducted during 21 May–2 June 2018
and reveal fluxes that are lower than these predictions. As
discussed in the Sect. 4, this implies a bottom-up bias in the
timing of the springtime emission onset.

We derive springtime livestock emissions within 7 [1–
15] % of the prior estimates (Fig. 3) based on the GEM air-
craft measurements. The fractional livestock underestimate
in GEPA during spring is thus only 30 % of the summer and
winter biases. Since emissions from enteric fermentation –
unlike those from manure – have little seasonal dependence
(IPCC, 2006), the differing bottom-up biases for summer
and winter versus spring point to errors associated with ma-
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Figure 5. Wetland and livestock methane emissions derived from the GMM inversions with associated posterior–prior differences. Results
are shown for GEM1 (July–August 2017), GEM2 (January 2018) and GEM3 (May–June 2018).

Figure 6. The same as Fig. 5 but showing results for the GMM inversions with boundary condition optimization.

nure management activities; this point is discussed further in
Sect. 4.

4 Key uncertainties for regional wetland and livestock
emissions

4.1 Wetland methane fluxes: role of wetland extent and
emission temperature dependence

As shown above, the GEM inversions reveal spatial and tem-
poral errors in the WetCHARTs (ensemble mean) prior wet-

land emissions for the Upper Midwest. Below, we combine
the inversion results with the individual WetCHARTs esti-
mates to derive information on key process parameters driv-
ing uncertainty in the predicted fluxes.

The WetCHARTs extended ensemble includes 18 mem-
bers that estimate wetland emissions F (t,d) at time t and
location d as follows:

F (t,d)= sA(t,d)R (t,d)q
T (t,d)

10
10 . (2)

Here, A(t,d) is wetland extent (m2 wetland area/m2 sur-
face area) based on either GLOBCOVER (Bontemps et al.,
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Figure 7. Methane emissions derived from the adjoint 4D-Var inversions with associated posterior–prior differences. Results are shown for
GEM1 (July–August 2017), GEM2 (January 2018) and GEM3 (May–June 2018). GMM-ADJ results are similar (Figs. S7–S8).

2011) or the Global Lakes and Wetlands Database (GLWD)
(Lehner and Döll, 2004), with temporal variability prescribed
using satellite-based surface water or reanalysis-based pre-
cipitation datasets (Bloom et al., 2017); R(t,d) is het-
erotrophic respiration rate (mgC/d/m2 of wetland area) taken
as the median monthly value from the Carbon Data Model
Framework (CARDAMOM; Bloom et al., 2016); T is sur-
face skin temperature (◦C); q10 quantifies the T dependence
of methane emissions relative to heterotrophic C respiration
(i.e. the CH4 :C temperature dependence), with q10 = 1, 2,
or 3; and s is a scaling factor imposing a global flux of 124.5,
166, or 207.5 Tg CH4/yr (Saunois et al., 2016; Bloom et al.,
2017).

Figure 8 shows the agreement between each of the
WetCHARTs ensemble members and the optimized wetland
fluxes (multi-inversion average) in a Taylor Diagram. It is
apparent from Fig. 8 that (1) wetland extent and (2) CH4 : C
emission temperature dependence (q10) are major factors
controlling prediction accuracy, as discussed further below.

1. Wetland extent. We see from Fig. 8 that the GLWD-
based models overestimate the actual wetland emis-
sions derived here. However, they also exhibit higher
spatial correlation with the optimized fluxes than the
GLOBCOVER-based models do. Despite their associ-
ated overestimate (also found over the US Southeast;
Sheng et al., 2018b), GLWD thus more accurately rep-
resents the wetland spatial distribution across the Up-
per Midwest landscape. The GLWD employs maxi-
mum wetland extent estimates derived from a range
of sources published during 1992–2000 (DMA, 1992;
UNEP-WCMC, 1993; Lehner and Döll, 2004), while
the GLOBCOVER data employs year 2009 space-
based measurements from Envisat’s Medium Resolu-
tion Imaging Spectrometer (Bontemps et al., 2011).
However, the mean 2.6-fold difference between the
GLWD- and GLOBCOVER-based methane emissions
for the Upper Midwest is much greater than any wet-
land area changes during 2000–2009 (USF&WS Na-
tional Wetlands Inventory, 2019). This high sensitivity
of emissions to wetland extent was likewise demon-

strated on a global basis in the WETCHIMP model
intercomparison, which reported annual flux estimates
varying by ±40 % from the mean with extensive spa-
tiotemporal disparities (Melton et al., 2013).

2. Temperature dependence (q10). We find for both GLWD
and GLOBCOVER that a CH4 : C q10 of 3 yields the
lowest centered root-mean-square error (RMSE) com-
pared to the optimized fluxes. This corresponds to an
average CH4 : T q10 (i.e., net T -dependence for methane
emissions) of 5 across the Upper Midwest domain
(Fig. S5) versus the prior value of 2.4. Eddy covari-
ance measurements at the Bog Lake peatland site in
northern Minnesota (see Fig. 1) during 2015–2017 im-
ply a CH4 : T q10 of 2.9 but based on 10 cm soil temper-
atures (Deventer et al., 2019). For comparison, Sheng et
al. (2018b) found that WetCHARTs ensemble members
employing CH4 : C q10 = 1 exhibited the closest agree-
ment with observations for wetlands in the US South-
east.

However, the bottom-up approach of prescribing q10
values has inherent limitations, and greater accuracy
will require more explicit treatment of underlying
drivers. Methane in wetlands is generated through
anaerobic microbial metabolism in waterlogged soil,
but a separate population of methanotrophic bacteria
above the anoxic–oxic boundary can oxidize 50 % or
more of that methane before it is able to escape to
the atmosphere (Segarra et al., 2015). These competing
processes at different depths lead to large uncertainties
when defining a single q10 value – even for an individual
site. For example, long-term measurements at the Bog
Lake peatland site referenced above reveal large year-
to-year CH4 : T variability associated with water table
fluctuations (Feng et al., 2020). Previous site-level stud-
ies likewise report a wide range of CH4 : T q10 values
(2–12) depending on location, year and soil temperature
depth (Kim et al., 1998; Jackowicz-Korczyński et al.,
2010; Mikhaylov et al., 2015; Marushchak et al., 2016;
Rinne et al., 2018).
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Figure 8. Taylor diagram evaluating the performance of Upper Midwest wetland emission estimates from the WetCHARTs inventory against
the optimized fluxes derived here. The colored symbols show the 18 WetCHARTs extended ensemble members, which feature three tempera-
ture sensitivity factors (CH4 : C q10 = 1, 2, or 3); three scale factors to obtain global emissions of 124.5, 166, or 207.5 Tg/yr; and two wetland
extent datasets (GLOBCOVER and GLWD, marked with open symbols and crosses, respectively). Symbols are colored by flux magnitude
relative to the optimized emissions. Three statistics are shown in these plots: (1) the slope between each symbol and the origin reflects the
spatial correlation between that model and the optimized emissions; (2) the distance between each symbol and the origin reflects the standard
deviation of that model estimate; and (3) the distance between each symbol and the optimized value reflects the centered root-mean-square
error of that model estimate relative to the optimized solution. Optimized results correspond to the multi-inversion ensemble mean.

Finally, as discussed earlier, the GEM inversions indicate a
bottom-up wetland flux overestimate during spring that may
reflect incorrect seasonal timing for the onset of emissions.
The Bog Lake peatland eddy covariance measurements sup-
port this idea, showing that in many years emissions rise later
in the spring than is predicted by the WetCHARTs ensem-
ble mean (Fig. S6). Soil temperatures at depths relevant to
microbial processes can exhibit a significant lag relative to
the surface skin temperatures used by WetCHARTs for emis-
sion estimation (Pickett-Heaps et al., 2011), and we hypoth-
esize that this lag is the primary reason for the springtime
discrepancy found here. Such lags vary with environmental
conditions such as snow cover, water table, and other factors
(Pickett-Heaps et al., 2011). Better characterization of the
coupled effects of soil temperature and hydrology on emis-
sions is thus needed to improve the fidelity of methane flux
estimates.

4.2 Livestock methane: enteric emissions
well-represented but large uncertainties for manure

The GEM inversions point to mean underestimates in the
prior GEPA livestock emissions of 24 (5–41) %, 25 (9–40) %
and 7 (1–15) % in summer, winter and spring, respectively.
Below, we explore these discrepancies by partitioning the de-
rived livestock emissions according to the geographic distri-
bution of beef cattle, dairy cattle and hogs.

Figure 9 shows county-level animal distributions from the
2017 US Department of Agriculture Census of Agriculture
(USDA-NASS, 2018). Beef cattle, dairy cattle, and hogs have
distinct spatial distributions, with highest population densi-

ties in the Dakotas, Wisconsin and central Minnesota, and
Iowa and southern Minnesota, respectively. They also em-
ploy different manure management strategies: in our study
region, liquid systems, which have >8× higher methane
conversion factors than dry systems (US Environmental Pro-
tection Agency, 2016), account for an estimated 1 %, 57 %
and 95 % of beef, dairy and hog management activities, re-
spectively. Dry systems make up the remainder. As a result,
enteric emissions are thought to account for more than 95 %
of the methane flux from beef facilities but only 60 % for
dairies (they are minor for hog facilities) (Yu et al., 2020).

The above spatial segregation affords an opportunity to
better understand methane emissions by livestock type and
(by extension) enteric versus manure contributions. To that
end, we partition our optimized fluxes by computing mean
livestock emission scaling factors (SFs) separately for model
grid cells with beef cattle, dairy cattle or hogs representing
≥ 70 % of the total animal population. Results are shown
in Table 1 and reflect statistical averages over 2374 (beef),
260 (dairy) and 1554 (hog) model grids. In each case we
present base-case estimates and uncertainties based on the
multi-inversion mean and range, respectively.

We find in this way that beef emissions are well-
represented in the bottom-up inventory across seasons (base-
case adjustments <15 %; Table 1). On the other hand, the
bottom-up dairy cattle and hog emissions exhibit seasonally
dependent errors, with a base-case underestimate of ∼ 30 %
in summer and winter but no apparent bias in spring. Taken
together, these findings suggest an accurate treatment of en-
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Figure 9. County-level animal populations for (a) beef cattle, (b) dairy cattle and (c) hogs, based on the 2017 US Department of Agriculture
Census of Agriculture (USDA-NASS, 2018).

Table 1. Derived methane emission scale factors for livestock by animal category.

Animal Analysis Model grid Seasonal scale factors∗

category counties cells Summer Winter Spring

Beef 646 2374 1.12 [0.98, 1.28] 1.15 [1.05, 1.24] 1.09 [1.04, 1.13]
Dairy 52 260 1.28 [0.97, 1.75] 1.30 [1.14, 1.59] 1.00 [0.81, 1.18]
Hog 428 1554 1.29 [1.09, 1.57] 1.28 [1.12, 1.48] 1.08 [0.93, 1.20]

∗ Results shown reflect the ensemble mean and range across all inversions and are computed for model grid cells in which the
corresponding animal category represents ≥ 70 % of the total livestock population.

teric emissions in the GEPA inventory but an underestimate
of manure emissions with inaccurate seasonality.

The variability of manure emission factors across manage-
ment systems and their high sensitivity to environmental fac-
tors may contribute to the above discrepancies. Along with
the large differences between liquid and dry systems, tem-
perature plays a major role in regulating manure emissions,
and model misrepresentation of this effect (which can oc-
cur, for example, when using surface skin temperatures to
approximate manure lagoon temperatures, as in the GEPA
inventory) can lead to significant bottom-up errors in both
the magnitude and seasonality of predicted fluxes (Park et
al., 2006). Local factors such as solar absorptivity, wind, ma-
nure depth, pH and humidity can also influence emissions
(Rennie et al., 2017; VanderZaag et al., 2013) but are not
generally accounted for in inventories. Further, use of lagoon
covers and anaerobic digestion systems can reduce methane
emissions by up to 90 %, and inadequate information on such
factors will lead to inventory errors.

Seasonal manure application is also likely contributing to
the bottom-up errors found here. The GEPA inventory com-
putes manure emissions assuming constant on-site manure
volume, with seasonal differences arising solely from the
temperature dependence of microbial activity (Maasakkers
et al., 2016). However, in the Upper Midwest, manure is ap-
plied to fields once or more per year, most commonly in
spring (MPCA, 2020). This causes manure volume on site

to vary significantly by season. Manure emissions after field
application are less than 1 % of those occurring during stor-
age and arise mainly from manure-dissolved methane that
escapes immediately after application (Amon et al., 2006;
Niles and Wiltshire, 2019). We speculate that this factor is
the reason the GEM data point to an inventory underestimate
for manure in summer and winter but not spring. Inclusion
of location-specific information on the timing and rate of
manure field application is thus likely to improve bottom-up
methane emission estimates.

Additional research will be needed to confirm the role of
manure in driving the top-down and bottom-up livestock dis-
crepancies observed here and to pinpoint the primary mech-
anisms involved. However, our conclusions above are con-
sistent with the domain-aggregated results discussed earlier
(Sect. 3) and shown in Fig. 3, as well as with findings from
previous studies. For example, a recent bottom-up study us-
ing updated animal, feed and management information rec-
ommended revising the IPCC 2006 emission factors by+8 %
for enteric emissions and+37 % for manure emissions (Wolf
et al., 2017). This aligns with our findings here of a +15 %
adjustment for beef facilities (dominated by enteric emis-
sions) and an approximate+30 % summer and winter adjust-
ment for dairies and hog facilities (with a larger role for ma-
nure emissions). In our previous work, we applied aircraft-
based mass balance to quantify facility-level emissions for
concentrated animal feeding operations in the Upper Mid-
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west and found (as here) good top-down and bottom-up
agreement for enteric emissions but discrepancies for manure
(Yu et al., 2020). A recent site-level study at a large Wiscon-
sin dairy farm observed low manure emissions (∼ 30 % of
the enteric flux) owing to frequent field application through-
out the year (Wiesner et al., 2020), further supporting our
characterization of manure management as a key uncertainty
in current large-scale bottom-up inventories.

5 Summary and outlook

We applied aircraft measurements from the GEM campaign
in a multi-inversion framework to improve understanding
of seasonal methane emissions in the Upper Midwest. To-
gether, our optimized emissions for summer, winter and
spring (combined with prior results for fall) indicate that
wetland emissions account for 32 % (20 [16–23] Gg/d) of
the total regional flux during these seasons. Anthropogenic
sources make up the remainder, with the largest contribution
from livestock (15 [14–17] Gg/d). Smaller but still significant
sources are derived for natural gas and petroleum systems
(10 [9–11] Gg/d), waste and landfills (8 [7–8] Gg/d), and coal
mines (6 [5–7] Gg/d); however, these are only weakly con-
strained in the inversions by the GEM observations.

Our inversions point to important spatial errors in
the WetCHARTs ensemble-mean wetland emissions, with
an underestimate in the Prairie Pothole region (reaching
76 mg/m2/d in summer) but an overestimate for Great Lakes
coastal wetlands (reaching −77 mg/m2/d in summer), and
a possible timing bias for the spring emission onset. Based
on the WetCHARTs ensemble, wetland extent and emission
temperature dependence are the largest uncertainty sources
in bottom-up estimates for this region. WetCHARTs esti-
mates based on the GLWD extent dataset tend to overes-
timate emissions but have higher spatial correlation with
the optimized fluxes than GLOBCOVER-based estimates.
WetCHARTs estimates employing a CH4 : C q10 of 3 have
the lowest RMSE with respect to our posterior emissions, in
contrast to findings for the US Southeast where a value of
1 yielded the best model–measurement agreement (Sheng et
al., 2018b). However, a body of literature shows that the tem-
perature dependence for methane emissions is highly vari-
able across locations, time and soil depth. Accurate flux pre-
dictions will thus require more explicit treatment of underly-
ing drivers including snow cover, water table and the coupled
effects of soil temperature and hydrology on emissions.

The optimized livestock methane emissions derived here
for the region are ∼ 25 % higher than the GEPA estimates
during summer and winter but agree with the bottom-up esti-
mates (to within 10 %) during spring. Since enteric emissions
(unlike those from manure) are relatively consistent through-
out the year, this seasonal discrepancy suggests bottom-up
errors associated with manure. We propose that the lower
emission adjustment during spring reflects management fac-

tors such as widespread application of manure to fields at that
time.

We further partition the derived livestock emissions based
on county-level animal populations for beef cattle (>95 %
enteric emissions), dairy cattle (∼ 60/40 % enteric/manure
emissions) and hogs (mostly manure emissions). In this way
we find that enteric fermentation emissions are well-captured
by the GEPA inventory with low overall bias but that manure
emissions are underestimated by as much as 30 % in summer
and winter, with biased seasonality. While further research is
needed to confirm this inferred role for manure in driving in-
ventory errors, conclusions here are consistent with other re-
cent work (e.g., Wolf et al., 2017; Yu et al., 2020; Wiesner et
al., 2020). Better representation of manure management (for
example, accounting for the timing and rate of field applica-
tion and incorporating finely resolved information on man-
agement systems) thus appear to be important priorities for
improving bottom-up emission estimates.

Findings here highlight the importance of Upper Midwest
agricultural emissions for both the regional (36 % of an-
nual Upper Midwest anthropogenic emissions) and national
(∼ 35 % of North American livestock emissions) methane
budget. These emissions should thus receive high priority for
mitigation efforts.

Enteric emissions can be reduced through approaches in-
cluding diet modification, vaccination, nutritional supple-
ments or animal selection; the effectiveness of such ap-
proaches and their economic benefits are the subject of a
large body of work (Martin et al., 2008; Boadi et al., 2004;
Smith et al., 2008; Montes et al., 2013; Nisbet et al., 2020;
Hristov et al., 2015). Nutritional changes to reduce methane
emissions can influence animal health and decrease plant-
available N in fertilizer; additional management is needed to
address those issues (Baker et al., 1975; Montes et al., 2013).
Enteric emissions can also be reduced by up to 85 % through
use of bio-filtration systems; however, in some cases this can
lead to increased N2O emissions, and assessment of the full
facility-level greenhouse gas impact is therefore necessary
(Montes et al., 2013; Nisbet et al., 2020).

Manure methane emissions can be reduced by up to 90 %
during storage through approaches that suppress methano-
genesis (e.g., via manure acidification, slurry aeration or
lowered storage temperatures) or capture methane for use
(via anaerobic digestion) (Chadwick et al., 2011; Montes et
al., 2013). In addition, frequent field application can reduce
methane storage time, leading to reduced emissions. How-
ever, consideration of crop demand, soil properties and ma-
nure nutrient content is needed to avoid exacerbating water
pollution and N2O emissions (Sutton et al., 2001; Chadwick
et al., 2011; Reay et al., 2012).

In the US, 255 anaerobic digestor installations reduced
greenhouse gas emissions by 43.8 million metric tonnes
CO2 eq. while generating 11 billion kilowatt-hours of electric-
ity during 2000–2019 (AgSTAR, 2019). Furthermore, based
on the source estimates derived here, application of anaerobic
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digestion (at assumed 60 % efficiency; Montes et al., 2013)
and bio-filtration (85 %; Montes et al., 2013) to all Upper
Midwest manure and enteric emissions could in theory yield
a 4.5 Tg/yr methane source reduction. This is an upper limit
as it assumes uniformly high-efficiency systems and feasi-
bility across all facilities. However, 4.5 Tg/yr is 1.7× the
estimated methane flux for the entire Permian basin during
2018–2019 (representing the largest emission ever reported
from a US oil- and gas-producing region; Montes et al., 2013;
Zhang et al., 2020). Techniques and policies to advance the
above management strategies thus have significant potential
for methane source mitigation and energy production in the
Upper Midwest and nationally.
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