Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric
Chemistry Department (ACD), Permoserstr. 15, 04318 Leipzig, Germany
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
Olaf Böge
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric
Chemistry Department (ACD), Permoserstr. 15, 04318 Leipzig, Germany
Maria Rodigast
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric
Chemistry Department (ACD), Permoserstr. 15, 04318 Leipzig, Germany
now at: Indulor Chemie GmbH & Co. KG Produktionsgesellschaft
Bitterfeld, 06749 Bitterfeld-Wolfen, Germany
Agata Kolodziejczyk
Institute of Physical Chemistry of the Polish Academy of Sciences,
Kasprzaka 44/52, 01-224 Warsaw, Poland
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric
Chemistry Department (ACD), Permoserstr. 15, 04318 Leipzig, Germany
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
This study investigates secondary organic aerosol (SOA) formation and particle growth from α-pinene, limonene, and m-cresol oxidation through NO3 and OH radicals and the effect of relative humidity. The formed SOA is comprehensively characterized with respect to the content of OC / EC, WSOC, SOA-bound peroxides, and SOA marker compounds. The findings present new insights and implications of nighttime chemistry, which can form SOA more efficiently than OH radical reaction during daytime.
This study investigates secondary organic aerosol (SOA) formation and particle growth from...