Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-7545-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-7545-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Shape dependence of snow crystal fall speed
Sandra Vázquez-Martín
Luleå University of Technology (LTU), Department of
Computer Science, Electrical and Space Engineering, Division of
Space Technology, 98 128, Kiruna, Sweden
Luleå University of Technology (LTU), Department of
Computer Science, Electrical and Space Engineering, Division of
Space Technology, 98 128, Kiruna, Sweden
Salomon Eliasson
Swedish Meteorological and Hydrological Institute (SMHI),
601 76, Norrköping, Sweden
Related authors
Sandra Vázquez-Martín, Thomas Kuhn, and Salomon Eliasson
Atmos. Chem. Phys., 21, 18669–18688, https://doi.org/10.5194/acp-21-18669-2021, https://doi.org/10.5194/acp-21-18669-2021, 2021
Short summary
Short summary
High-resolution top- and side-view images of snow ice particles taken by the D-ICI instrument are used to determine the shape; size; cross-sectional area; fall speed; and, based upon these properties, the mass of the individual snow particles. The study analyses the relationships between these fundamental properties as a function of particle shape and highlights that the choice of size parameter, maximum dimension or another characteristic length, is crucial when relating fall speed to mass.
Karl-Göran Karlsson, Nina Håkansson, Salomon Eliasson, Erwin Wolters, and Ronald Scheirer
Atmos. Meas. Tech., 18, 3833–3855, https://doi.org/10.5194/amt-18-3833-2025, https://doi.org/10.5194/amt-18-3833-2025, 2025
Short summary
Short summary
The topic is finding methods to extend climate data records from single-instrument satellite observations, in this case the Advanced Very High Resolution Radiometer (AVHRR). Several modern instruments include AVHRR-heritage channels, but some corrections are necessary to account for some differences. We have simulated AVHRR data from the Visible Infrared Imaging Radiometer Suite (VIIIRS) sensor on National Oceanic and Atmospheric Administration (NOAA) polar satellites. We find that methods based on machine learning are capable of performing these corrections.
János Stenszky and Thomas Kuhn
EGUsphere, https://doi.org/10.5194/egusphere-2025-2818, https://doi.org/10.5194/egusphere-2025-2818, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A balloon-borne instrument collects ice particles on a plastic film strip as it ascends through cirrus clouds. The produced images show ice particles, but also a background revealing features. Manual analysis is time consuming, so two machine learning models have been developed to first detect the ice particles and then classify their shape. The results of these models agree well with manual analysis, thus analysis can be automated using these models.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Sandra Vázquez-Martín, Thomas Kuhn, and Salomon Eliasson
Atmos. Chem. Phys., 21, 18669–18688, https://doi.org/10.5194/acp-21-18669-2021, https://doi.org/10.5194/acp-21-18669-2021, 2021
Short summary
Short summary
High-resolution top- and side-view images of snow ice particles taken by the D-ICI instrument are used to determine the shape; size; cross-sectional area; fall speed; and, based upon these properties, the mass of the individual snow particles. The study analyses the relationships between these fundamental properties as a function of particle shape and highlights that the choice of size parameter, maximum dimension or another characteristic length, is crucial when relating fall speed to mass.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Cited articles
Baum, B. A., Yang, P., Heymsfield, A. J., Schmitt, C. G., Xie, Y., Bansemer,
A., Hu, Y.-X., and Zhang, Z.: Improvements in Shortwave Bulk Scattering and
Absorption Models for the Remote Sensing of Ice Clouds, J. Appl. Meteorol. Clim., 50, 1037–1056,
https://doi.org/10.1175/2010JAMC2608.1, 2011. a
Brandes, E. A., Ikeda, K., Thompson, G., and Schönhuber, M.: Aggregate
Terminal Velocity/Temperature Relations, J. Appl. Meteorol. Clim., 47, 2729–2736,
https://doi.org/10.1175/2008JAMC1869.1, 2008. a
Cooper, S. J. and Garrett, T. J.: Identification of small ice cloud particles
using passive radiometric observations, J. Appl. Meteorol., 49, 2334–247,
2010. a
Dunnavan, E. L.: How Snow Aggregate Ellipsoid Shape and Orientation Variability
Affects Fall Speed and Self-Aggregation Rates, J. Atmos. Sci., 78, 51–73,
https://doi.org/10.1175/JAS-D-20-0128.1, 2021. a, b
Foster, J., Barton, J., Chang, A., and Hall, D.: Snow crystal orientation
effects on the scattering of passive microwave radiation, IEEE T. Geosci. Remote, 38, 2430–2434,
https://doi.org/10.1109/36.868899, 2000. a
Gergely, M. and Garrett, T. J.: Impact of the natural variability in snowflake
diameter, aspect ratio, and orientation on modeled snowfall radar
reflectivity, J. Geophys. Res.-Atmos., 121,
12236–12252, https://doi.org/10.1002/2016JD025192, 2016. a
Haider, A.: Drag Coefficient and Terminal Velocity of Spherical and
Non-Spherical Particles, Powder Technol., 58, 63–70,
https://doi.org/10.1016/0032-5910(89)80008-7, 1989. a
Heymsfield, A. J. and Kajikawa, M.: An Improved Approach to Calculating
Terminal Velocities of Plate-like Crystals and Graupel, J. Atmos. Sci., 44,
1088–1099, https://doi.org/10.1175/1520-0469(1987)044<1088:AIATCT>2.0.CO;2, 1987. a, b, c, d
Heymsfield, A. J. and Westbrook, C. D.: Advances in the Estimation of Ice
Particle Fall Speeds Using Laboratory and Field Measurements, J. Atmos. Sci.,
67, 2469–2482, https://doi.org/10.1175/2010JAS3379.1, 2010. a, b
Jiang, Z., Verlinde, J., Clothiaux, E., Aydin, K., and Schmitt, C.: Shapes and
Fall Orientations of Ice Particle Aggregates, J. Atmos. Sci., 76, 1903–1916, https://doi.org/10.1175/JAS-D-18-0251.1, 2019. a
Jin, Z., Charlock, T. P., Yang, P., Xie, Y., and Miller, W.: Snow optical
properties for different particle shapes with application to snow grain size
retrieval and MODIS/CERES radiance comparison over Antarctica, Remote Sens.
Environ., 112, 3563–3581, https://doi.org/10.1016/j.rse.2008.04.011,
2008. a
Kajikawa, M.: Measurement of Falling Velocity of Individual Snow Crystals, J.
Meteorol. Soc. Japan, 50, 577–583, 1972. a
Kikuchi, K., Kameda, T., Higuchi, K., and Yamashita, A.: A global
classification of snow crystals, ice crystals, and solid precipitation based
on observations from middle latitudes to polar regions, Atmos. Res.,
132–133, 460–472, https://doi.org/10.1016/j.atmosres.2013.06.006, 2013. a
Kneifel, S., Löhnert, U., Battaglia, A., Crewell, S., and Siebler, D.: Snow
scattering signals in ground-based passive microwave radiometer measurements,
J. Geophys. Res.-Atmos., 115, 1–17, https://doi.org/10.1029/2010JD013856, 2010. a
Kuhn, T. and Gultepe, I.: Ice Fog and Light Snow Measurements Using a
High-Resolution Camera System, Pure Appl. Geophys., 173, 3049–3064,
https://doi.org/10.1007/s00024-016-1343-7, 2016. a
Kuhn, T. and Vázquez-Martín, S.: Snow ice particle microphysical properties and fall speed from particle images taken in Kiruna (Sweden) 2014–2018, Swedish National Data Service, Version 1.0, https://doi.org/10.5878/dgak-p185, 2021. a
Lee, J., Jung, S.-H., Park, H.-M., KWON, S., Lin, P.-L., and Lee, G.:
Classification of Precipitation Types Using Fall Velocity-Diameter
Relationships from 2D-Video Distrometer Measurements, Adv. Atmos. Sci., 32, 1277–1290, https://doi.org/10.1007/s00376-015-4234-4, 2015. a, b, c, d
Locatelli, J. D. and Hobbs, P. V.: Fall speeds and masses of solid
precipitation particles, J. Geophys. Res., 79, 2185–2197,
https://doi.org/10.1029/JC079i015p02185, 1974. a, b, c, d
Loeb, N. G., Yang, P., Rose, F. G., Hong, G., Sun-Mack, S., Minnis, P., Kato,
S., Ham, S.-H., Smith, W. L., Hioki, S., and Tang, G.: Impact of Ice Cloud
Microphysics on Satellite Cloud Retrievals and Broadband Flux Radiative
Transfer Model Calculations, J. Climate, 31, 1851–1864, https://doi.org/10.1175/JCLI-D-17-0426.1,
2018. a
Marchand, R., Mace, G., Hallar, A., McCubbin, I., Matrosov, S., and Shupe, M.:
Enhanced Radar Backscattering due to Oriented Ice Particles at 95 GHz during
StormVEx, J. Atmos. Ocean. Technol., 30, 2336–2351,
https://doi.org/10.1175/JTECH-D-13-00005.1, 2013. a
Matrosov, S., Mace, G., Marchand, R., Shupe, M., Hallar, A., and McCubbin, I.:
Observations of Ice Crystal Habits with a Scanning Polarimetric W-Band Radar
at Slant Linear Depolarization Ratio Mode, J. Atmos. Ocean. Technol., 29,
989–1008, https://doi.org/10.1175/JTECH-D-11-00131.1, 2012. a
Mitchell, D. L., Rasch, P., Ivanova, D., McFarquhar, G., and Nousiainen, T.:
Impact of small ice crystal assumptions on ice sedimentation rates in cirrus
clouds and GCM simulations, Geophys. Res. Lett., 35, 1–5,
https://doi.org/10.1029/2008GL033552, 2008. a
Nakaya, U.: Snow crystals: natural and artificial, Harvard University Press, Cambridge, 1954. a
Posselt, D. J., L'Ecuyer, T. S., and Stephens, G. L.: Exploring the error
characteristics of thin ice cloud property retrievals using a Markov chain
Monte Carlo algorithm, J. Geophys. Res., 113, D24206,
https://doi.org/10.1029/2008JD010832, 2008. a
Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and precipitation, Kluwer Academic Publishers, Dordrecht, 2nd rev. and enl. edn., 1997. a
Schefold, R., Baschek, B., Wüest, M., and Barthazy, E.: Fall velocity and axial ratio of snowflakes, In Proceedings of ERAD (2002), pp. 1–6, Copernicus GmbH, available at: https://iacweb.ethz.ch/doc/publications/schefold_delft_2002.pdf (last access: 30 April 2021), 2002. a
SMHI: Ladda ner meteorologiska observationer,
available at: https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer/#param=wind,stations=all,stationid=180940, last access: 5 February 2020. a
Stoelinga, M. T., Hobbs, P. V., Mass, C. F., Locatelli, J. D., Colle, B. A., Houze, R. A., Rangno, A. L., Bond, N. A., Smull, B. F., Rasmussen, R. M., Thompson, G., and Colman, B. R.: Improvement of Microphysical Parameterization through Observational Verification Experiment, Bull. Amer. Met. Soc., 84, 1807–1826, https://doi.org/10.1175/bams-84-12-1807, 2003. a, b
Sun, W., Hu, Y., Lin, B., Liu, Z., and Videen, G.: The impact of ice cloud particle microphysics on the uncertainty of ice water content retrievals, J. Quant. Spectrosc. Radiat. Transfer, 112, 189–196, https://doi.org/10.1016/j.jqsrt.2010.04.003, 2011. a, b
Tao, W.-K., Simpson, J., Baker, D., Braun, S., Chou, M.-D., Ferrier, B.,
Johnson, D., Khain, A., Lang, S., Lynn, B., Shie, C.-L., Starr, D., Sui,
C.-H., Wang, Y., and Wetzel, P.: Microphysics, radiation and surface
processes in the Goddard Cumulus Ensemble (GCE) model, Meteorol. Atmos.
Phys., 82, 97–137, 2003. a, b
Westbrook, C. D. and Sephton, E. K.: Using 3-D-printed analogues to investigate
the fall speeds and orientations of complex ice particles, Geophys. Res.
Lett., 44, 7994–8001, https://doi.org/10.1002/2017GL074130, 2017. a, b
Xie, X. and Miao, J.: Polarization difference due to nonrandomly oriented ice
particles at millimeter/submillimeter waveband, J. Quant. Spectrosc. Radiat. Transfer, 112, 1090–1098,
https://doi.org/10.1016/j.jqsrt.2010.11.020, 2011. a
Xie, X., Löhnert, U., Kneifel, S., and Crewell, S.: Snow particle orientation
observed by ground-based microwave radiometry, J. Geophys. Res.-Atmos., 117, D02206, https://doi.org/10.1029/2011JD016369, 2012. a
Xie, X., Crewell, S., Löhnert, U., Simmer, C., and Miao, J.: Polarization signatures and brightness temperatures caused by horizontally oriented snow particles at microwave bands: Effects of atmospheric absorption, J. Geophys. Res.-Atmos.,
120, 6145–6160, https://doi.org/10.1002/2015JD023158, 2015. a
Xie, Y., Yang, P., Kattawar, G., Baum, B., and Hu, Y.: Simulation of the
optical properties of plate aggregates for application to the remote sensing
of cirrus clouds, Appl. Opt., 50, 1065–81, https://doi.org/10.1364/AO.50.001065, 2011. a
Yang, P., Zhang, Z., Kattawar, G. W., Warren, S. G., Baum, B. A., Huang, H.-L.,
Hu, Y. X., Winker, D., and Iaquinta, J.: Effect of Cavities on the Optical
Properties of Bullet Rosettes: Implications for Active and Passive Remote
Sensing of Ice Cloud Properties, J. Appl. Meteorol. Clim., 47, 2311–2330,
https://doi.org/10.1175/2008JAMC1905.1, 2008. a, b
Yang, P., Wendisch, M., Bi, L., Kattawar, G., and Hu, Y.: Dependence of
extinction cross-section on incident polarization state and particle
orientation, J. Quant. Spectrosc. Radiat. Transfer, 112, 2035–2039,
https://doi.org/10.1016/j.jqsrt.2011.04.012, 2011. a
Yuter, S., Kingsmill, D., Nance, L., and Löffler-Mang, M.: Observations of
precipitation size and fall speed characteristics within coexisting rain and
wet snow, J. Appl. Meteorol. Clim., 45, 1450–1464, 2006. a
Zawadzki, I., Jung, E., and Lee, G.: Snow Studies. Part I: A Study of Natural
Variability of Snow Terminal Velocity, J. Atmos. Sci., 67, 1591–1604,
https://doi.org/10.1175/2010JAS3342.1, 2010. a, b
Zhang, Z., Yang, P., Kattawar, G., Riedi, J., -Labonnote, L. C., Baum, B. A., Platnick, S., and Huang, H.-L.: Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparison, Atmos. Chem. Phys., 9, 7115–7129, https://doi.org/10.5194/acp-9-7115-2009, 2009. a
Short summary
In this work, we present new fall speed measurements of natural snow particles and ice crystals. We study the particle fall speed relationships and how they depend on particle shape. We analyze these relationships as a function of particle size, cross-sectional area, and area ratio for different particle shape groups. We also investigate the dependence of the particle fall speed on the orientation, as it has a large impact on the cross-sectional area.
In this work, we present new fall speed measurements of natural snow particles and ice crystals....
Altmetrics
Final-revised paper
Preprint