Articles | Volume 21, issue 9
https://doi.org/10.5194/acp-21-6945-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-6945-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Laboratory study of the collection efficiency of submicron aerosol particles by cloud droplets – Part I: Influence of relative humidity
Alexis Dépée
Institut de Radioprotection et de Sûreté
Nucléaire (IRSN), PSN-RES, SCA, Gif-sur-Yvette, 91192,
France
Université Clermont Auvergne, Laboratoire de
Météorologie Physique, Clermont-Ferrand, France
Institut de Radioprotection et de Sûreté
Nucléaire (IRSN), PSN-RES, SCA, Gif-sur-Yvette, 91192,
France
Thomas Gelain
Institut de Radioprotection et de Sûreté
Nucléaire (IRSN), PSN-RES, SCA, Gif-sur-Yvette, 91192,
France
Marie Monier
Université Clermont Auvergne, Laboratoire de
Météorologie Physique, Clermont-Ferrand, France
CNRS, INSU, UMR 6016, LaMP, Aubière,
France
Andrea Flossmann
Université Clermont Auvergne, Laboratoire de
Météorologie Physique, Clermont-Ferrand, France
CNRS, INSU, UMR 6016, LaMP, Aubière,
France
Related authors
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alexis Dépée, Pascal Lemaitre, Thomas Gelain, Marie Monier, and Andrea Flossmann
Atmos. Chem. Phys., 21, 6963–6984, https://doi.org/10.5194/acp-21-6963-2021, https://doi.org/10.5194/acp-21-6963-2021, 2021
Short summary
Short summary
The present article describes a new In-Cloud Aerosol Scavenging Experiment (In-CASE) that has been conceived to measure the collection efficiency of submicron aerosol particles by cloud droplets. The present article focuses on the influence of electrostatic effects on the collection efficiency.
Thibaut Ménard, Emmanuel Reyes, Wojciech Aniszewski, Pascal Lemaitre, and Emmanuel Belut
Aerosol Research Discuss., https://doi.org/10.5194/ar-2026-1, https://doi.org/10.5194/ar-2026-1, 2026
Preprint under review for AR
Short summary
Short summary
This study uses advanced computer simulations to explore how falling water drops remove airborne particles. It shows that when drops deform and oscillate, their motion strongly affects how efficiently aerosols are captured. The model accurately predicts drop speed and shape, but capture rates can differ from experiments by up to an order of magnitude. These gaps likely stem from missing physical effects (evaporation), uncertainties in aerosol measurements and numerical inaccuracies.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Anthony C. Jones, Adrian Hill, John Hemmings, Pascal Lemaitre, Arnaud Quérel, Claire L. Ryder, and Stephanie Woodward
Atmos. Chem. Phys., 22, 11381–11407, https://doi.org/10.5194/acp-22-11381-2022, https://doi.org/10.5194/acp-22-11381-2022, 2022
Short summary
Short summary
As raindrops fall to the ground, they capture aerosol (i.e. below-cloud scavenging or BCS). Many different BCS schemes are available to climate models, and it is unclear what the impact of selecting one scheme over another is. Here, various BCS models are outlined and then applied to mineral dust in climate model simulations. We find that dust concentrations are highly sensitive to the BCS scheme, with dust atmospheric lifetimes ranging from 5 to 44 d.
Alexis Dépée, Pascal Lemaitre, Thomas Gelain, Marie Monier, and Andrea Flossmann
Atmos. Chem. Phys., 21, 6963–6984, https://doi.org/10.5194/acp-21-6963-2021, https://doi.org/10.5194/acp-21-6963-2021, 2021
Short summary
Short summary
The present article describes a new In-Cloud Aerosol Scavenging Experiment (In-CASE) that has been conceived to measure the collection efficiency of submicron aerosol particles by cloud droplets. The present article focuses on the influence of electrostatic effects on the collection efficiency.
Cited articles
Adachi, K., Kajino, M., Zaizen, Y., and Igarashi, Y.: Emission of spherical
cesium-bearing particles from an early stage of the Fukushima nuclear
accident, Sci. Rep.-UK, 3, 1–5, https://doi.org/doi.org/10.1038/srep02554, 2013.
Al-Azzawi, H. K. and Owen, I.: Measuring the thermal conducitivity of
uranin, Int. J. Heat Fluid Fl., 5, 57–59, 1984.
Ardon-Dryer, K., Huang, Y.-W., and Cziczo, D. J.: Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis, Atmos. Chem. Phys., 15, 9159–9171, https://doi.org/10.5194/acp-15-9159-2015, 2015.
Beard, K. V.: Terminal velocity and shape of cloud and precipitation drops
aloft, J. Atmos. Sci., 33, 851–864, 1976.
Beard, K. V. and Pruppacher, H. R.: A wind tunnel investigation of the rate
of evaporation of small water drops falling at terminal velocity in
air, J. Atmos. Sci., 28, 1455–1464, https://doi.org/10.1175/1520-0469(1971)028<1455:AWTIOT>2.0.CO;2, 1971.
Bell, M. L., Davis, D. L., and Fletcher, T.: A retrospective assessment of
mortality from the London smog episode of 1952: the role of influenza and
pollution, Environ. Health Persp., 112, 6–8, 2004.
Brock, J. R.: On the theory of thermal forces acting on aerosol
particles, J. Coll. Sci. Imp. U. Tok., 17, 768–780, 1962.
Dépée, A., Lemaitre, P., Gelain, T., Mathieu, A., Monier, M., and
Flossmann, A.: Theoretical study of aerosol particle electroscavenging by
clouds, J. Aerosol Sci., 135, 1–20, 2019.
Dépée, A., Lemaitre, P., Gelain, T., Monier, M., and Flossmann, A.: Laboratory study of the collection efficiency of submicron aerosol particles
by cloud droplets – Part II: Influence of electric charges, Atmos. Chem. Phys., 21, 6963–6984,
https://doi.org/10.5194/acp-21-6963-2021, 2021.
Devell, L., Tovedal, H., Bergström, U., Appelgren, A., Chyssler, J., and
Andersson, L.: Initial observations of fallout from the reactor accident at
Chernobyl, Nature, 321, 192–193, 1986.
Dockery, D. W., Schwartz, J., and Spengler, J. D.: Air pollution and daily
mortality: associations with particulates and acid aerosols, Environ. Res.,
59, 362–373, 1992.
Flossmann, A. I.: Interaction of aerosol particles and clouds, J. Atmos. Sci., 55, 879–887, 1998.
Flossmann, A. I., Hall, W. D., and Pruppacher, H. R.: A theoretical study of
the wet removal of atmospheric pollutants, Part I: The redistribution of
aerosol particles captured through nucleation and impaction scavenging by
growing cloud drops, J. Atmos. Sci., 42, 583–606, 1985.
Greenfield, S. M.: Rain scavenging of radioactive particulate matter from
the atmosphere, J. Meteorol., 14, 115–125, 1999.
Jackson, J. D.: Classical electrodynamics, 3rd edition, Wiley & Sons, New York, London, Sydney, 808, 1999.
Jaenicke, R.: Chapter 1: Tropospheric aerosols, Aerosol-cloud-climate interactions, in: International Geophysics, Vol. 54, edited by: Hobbs, P. Academic Press, 1–31, https://doi.org/10.1016/S0074-6142(08)60210-7, 1993.
Jost, D. T., Gäggeler, H. W., Baltensperger, U., Zinder, B., and Haller,
P.: Chernobyl fallout in size-fractionated aerosol, Nature, 324,
22–23, 1986.
Kaneyasu, N., Ohashi, H., Suzuki, F., Okuda, T., and Ikemori, F.: Sulfate
aerosol as a potential transport medium of radiocesium from the Fukushima
nuclear accident, Environ. Sci. Technol., 46, 5720–5726, 2012.
Ladino, L., Stetzer, O., Hattendorf, B., Günther, D., Croft, B., and
Lohmann, U.: Experimental study of collection efficiencies between submicron
aerosols and cloud droplets, J. Atmos. Sci., 68, 1853–1864, 2011.
Laguionie, P., Roupsard, P., Maro, D., Solier, L., Rozet, M., Hébert,
D., and Connan, O.: Simultaneous quantification of the contributions of dry,
washout and rainout deposition to the total deposition of particle-bound 7Be
and 210Pb on an urban catchment area on a monthly scale, J. Aerosol Sci., 77, 67–84, 2014.
Lira, I.: Evaluating the measurement uncertainty: fundamentals and practical guidance, in: institute of physics, series in measurement science and technology, Institute of Physics Publishing, Bristol and Philadelphia, 251, https://doi.org/10.1119/1.1522703, 2002.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Pöllänen, R., Valkama, I., and Toivonen, H.: Transport of
radioactive particles from the Chernobyl accident, Atmos. Environ., 31,
3575–3590, 1997.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, in Atmospheric and oceanographic Sciences Library, Kluwer Academic Press, Dordrecht/Boston/London, 954 pp., 1997.
Quérel, A., Lemaitre, P., Monier, M., Porcheron, E., Flossmann, A. I., and Hervo, M.: An experiment to measure raindrop collection efficiencies: influence of rear capture, Atmos. Meas. Tech., 7, 1321–1330, https://doi.org/10.5194/amt-7-1321-2014, 2014.
Reischl, G. P. W. W., John, W., and Devor, W.: Uniform electrical
charging of monodisperse aerosols, J. Aerosol Sci., 8, 55–65, 2014.
Santachiara, G., Prodi, F., and Belosi, F.: A review of termo-and diffusio-phoresis in the atmospheric aerosol scavenging process, Part 1: Drop scavenging, 2, 148–158, https://doi.org/10.4236/acs.2012.22016, 2012.
Sharp, D. H.: Overview of Rayleigh-taylor instability, No. LA-UR-83-2130,
CONF-8305110-2, Los Alamos National Lab., New Mexico, USA, 1983.
Tao, W. K., Chen, J. P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols
on convective clouds and precipitation, Rev. Geophys., 50, 1–62, https://doi.org/10.1029/2011RG000369, 2012.
Tinsley, B. A. and Zhou, L.: Parameterization of aerosol scavenging due to
atmospheric ionization, J. Geophys. Res-Atmos., 120, 8389–8410,
2015.
Tinsley, B. A., Zhou, L., and Plemmons, A.: Changes in scavenging of
particles by droplets due to weak electrification in
clouds, Atmos. Res., 79, 266–295, 2006.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, 1974.
Waldmann, L. and Schmitt, K. H.: Thermo-phoresis and diffusiophoresis of
aerosols, Aerosol Science, Academic Press, London, UK, 137–162, 1966.
Wang, P. K., Grover, S. N., and Pruppacher, H. R.: On the effect of electric
charges on the scavenging of aerosol particles by clouds and small
raindrops, J. Atmos. Sci., 35, 1735–1743, 1978.
Wiedensohler, A.: An approximation of the bipolar charge distribution for
particles in the submicron size range, J. Aerosol Sci., 19, 387–389,
1988.
Short summary
Present article describe a new In-Cloud Aerosol Scavenging Experiment (In-CASE) that has been conceived to measure the collection efficiency of submicron aerosol particles by cloud droplets. The present article focuses on the influence of phoretic effects on the collection efficiency.
Present article describe a new In-Cloud Aerosol Scavenging Experiment (In-CASE) that has been...
Altmetrics
Final-revised paper
Preprint