Articles | Volume 21, issue 8
https://doi.org/10.5194/acp-21-6455-2021
https://doi.org/10.5194/acp-21-6455-2021
Research article
 | 
30 Apr 2021
Research article |  | 30 Apr 2021

Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect

Carmen Córdoba-Jabonero, Michaël Sicard, María-Ángeles López-Cayuela, Albert Ansmann, Adolfo Comerón, María-Paz Zorzano, Alejandro Rodríguez-Gómez, and Constantino Muñoz-Porcar

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Carmen Cordoba-Jabonero on behalf of the Authors (02 Mar 2021)  Author's response    Author's tracked changes    Manuscript
ED: Publish as is (10 Mar 2021) by Stelios Kazadzis
AR by Carmen Cordoba-Jabonero on behalf of the Authors (15 Mar 2021)  Author's response    Manuscript
Short summary
The particular pathway of dust outbreaks defines the aerosol scenario and short-wave (SW) dust direct radiative effect (DRE). The synergetic use of POLIPHON method with continuous P-MPL measurements allows SW DRE of coarse (Dc) and fine (Df) dust particles to be evaluated separately. A dust-induced cooling effect is found, and despite Dc usually being dominant in intense dust events, the Df contribution to the total DRE can be significant, being higher at the top of atmosphere than on surface.
Altmetrics
Final-revised paper
Preprint