Articles | Volume 21, issue 8
https://doi.org/10.5194/acp-21-5821-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5821-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models
Department of Earth and Planetary Sciences, University of California Riverside, Riverside, CA 92521, USA
Department of Earth and Planetary Sciences, University of California Riverside, Riverside, CA 92521, USA
Wei Liu
Department of Earth and Planetary Sciences, University of California Riverside, Riverside, CA 92521, USA
Cynthia A. Randles
ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
Related authors
Taufiq Hassan, Kai Zhang, Jianfeng Li, Balwinder Singh, Shixuan Zhang, Hailong Wang, and Po-Lun Ma
Geosci. Model Dev., 17, 3507–3532, https://doi.org/10.5194/gmd-17-3507-2024, https://doi.org/10.5194/gmd-17-3507-2024, 2024
Short summary
Short summary
Anthropogenic aerosol emissions are an essential part of global aerosol models. Significant errors can exist from the loss of emission heterogeneity. We introduced an emission treatment that significantly improved aerosol emission heterogeneity in high-resolution model simulations, with improvements in simulated aerosol surface concentrations. The emission treatment will provide a more accurate representation of aerosol emissions and their effects on climate.
Jianfeng Li, Kai Zhang, Taufiq Hassan, Shixuan Zhang, Po-Lun Ma, Balwinder Singh, Qiyang Yan, and Huilin Huang
Geosci. Model Dev., 17, 1327–1347, https://doi.org/10.5194/gmd-17-1327-2024, https://doi.org/10.5194/gmd-17-1327-2024, 2024
Short summary
Short summary
By comparing E3SM simulations with and without regional refinement, we find that model horizontal grid spacing considerably affects the simulated aerosol mass budget, aerosol–cloud interactions, and the effective radiative forcing of anthropogenic aerosols. The study identifies the critical physical processes strongly influenced by model resolution. It also highlights the benefit of applying regional refinement in future modeling studies at higher or even convection-permitting resolutions.
Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael Prather, Alex Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Bjørn H. Samset, Chris Smith, Steven Turnock, Duncan Watson-Parris, and Paul J. Young
Atmos. Chem. Phys., 25, 8289–8328, https://doi.org/10.5194/acp-25-8289-2025, https://doi.org/10.5194/acp-25-8289-2025, 2025
Short summary
Short summary
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) aimed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. We review its contribution to AR6 (Sixth Assessment Report of the Intergovernmental Panel on Climate Change) and the wider understanding of the role of these species in climate and climate change. We identify challenges and provide recommendations to improve the utility and uptake of climate model data, detailed summary tables of CMIP6 models, experiments, and emergent diagnostics.
Feifei Luo, Bjørn H. Samset, Camilla W. Stjern, Manoj Joshi, Laura J. Wilcox, Robert J. Allen, Wei Hua, and Shuanglin Li
Atmos. Chem. Phys., 25, 7647–7667, https://doi.org/10.5194/acp-25-7647-2025, https://doi.org/10.5194/acp-25-7647-2025, 2025
Short summary
Short summary
Black carbon (BC) aerosol is emitted from the incomplete combustion of biomass and fossil fuels. We found that Asian BC leads to strong local cooling and drying. Reductions in precipitation primarily depend on the thermodynamic effects due to solar radiation absorption by BC. The combined thermodynamic and dynamic effects shape the spatial pattern of precipitation responses to Asian BC. These results help us further understand the impact of emissions of anthropogenic aerosols on Asian climate.
Hannah Nesser, Kevin W. Bowman, Matthew D. Thill, Daniel J. Varon, Cynthia A. Randles, Ashutosh Tewari, Felipe J. Cardoso-Saldaña, Emily Reidy, Joannes D. Maasakkers, and Daniel J. Jacob
EGUsphere, https://doi.org/10.5194/egusphere-2025-2850, https://doi.org/10.5194/egusphere-2025-2850, 2025
Short summary
Short summary
Regional analyses of atmospheric trace gases can improve knowledge of fluxes and their trends at high resolution but rely on the specification of boundary conditions at the domain edges. Biases in the often-uncertain boundary conditions propagate to the inferred fluxes. We develop a framework to explain how errors in the boundary conditions influence the optimized fluxes, derive two metrics to estimate this influence, and compare two methods to correct for the biases.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025, https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that, while there is regional warming, the global 2020–2040 temperature rise is only +0.03 °C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Robert James Allen
EGUsphere, https://doi.org/10.5194/egusphere-2025-32, https://doi.org/10.5194/egusphere-2025-32, 2025
Short summary
Short summary
CMIP6 models are analyzed to quantify the biogeophysical (non-carbon cycle) and biogeochemical (enhanced carbon storage) effects of carbon fertilization at the time of CO2 quadrupling. The biogeophysical effects lead to relatively weak warming (0.16 ± 0.09 K ) largely due to decreases in surface latent heat flux associated with reduced canopy transpiration. Biogeochemical cooling associated with enhanced land carbon storage dominates at -1.38 K (-1.92 to -0.84 K).
Robert J. Allen, Xueying Zhao, Cynthia A. Randles, Ryan J. Kramer, Bjørn H. Samset, and Christopher J. Smith
Atmos. Chem. Phys., 24, 11207–11226, https://doi.org/10.5194/acp-24-11207-2024, https://doi.org/10.5194/acp-24-11207-2024, 2024
Short summary
Short summary
Present-day methane shortwave absorption mutes 28% (7–55%) of the surface warming associated with its longwave absorption. The precipitation increase associated with the longwave radiative effects of the present-day methane perturbation is also muted by shortwave absorption but not significantly so. Methane shortwave absorption also impacts the magnitude of its climate feedback parameter, largely through the cloud feedback.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
James L. Gomez, Robert J. Allen, and King-Fai Li
Atmos. Chem. Phys., 24, 6937–6963, https://doi.org/10.5194/acp-24-6937-2024, https://doi.org/10.5194/acp-24-6937-2024, 2024
Short summary
Short summary
Wildfires in California (CA) have grown very large during the past 20 years. These fires emit sunlight-absorbing aerosols. Analyzing observational data, our study finds that aerosols emitted from large fires in northern CA spread throughout CA and Nevada and heat the atmosphere. This heating is consistent with larger-than-normal temperatures and dry conditions. Further study is needed to determine how much the aerosols heat the atmosphere and whether they are drying the atmosphere as well.
Taufiq Hassan, Kai Zhang, Jianfeng Li, Balwinder Singh, Shixuan Zhang, Hailong Wang, and Po-Lun Ma
Geosci. Model Dev., 17, 3507–3532, https://doi.org/10.5194/gmd-17-3507-2024, https://doi.org/10.5194/gmd-17-3507-2024, 2024
Short summary
Short summary
Anthropogenic aerosol emissions are an essential part of global aerosol models. Significant errors can exist from the loss of emission heterogeneity. We introduced an emission treatment that significantly improved aerosol emission heterogeneity in high-resolution model simulations, with improvements in simulated aerosol surface concentrations. The emission treatment will provide a more accurate representation of aerosol emissions and their effects on climate.
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Jianfeng Li, Kai Zhang, Taufiq Hassan, Shixuan Zhang, Po-Lun Ma, Balwinder Singh, Qiyang Yan, and Huilin Huang
Geosci. Model Dev., 17, 1327–1347, https://doi.org/10.5194/gmd-17-1327-2024, https://doi.org/10.5194/gmd-17-1327-2024, 2024
Short summary
Short summary
By comparing E3SM simulations with and without regional refinement, we find that model horizontal grid spacing considerably affects the simulated aerosol mass budget, aerosol–cloud interactions, and the effective radiative forcing of anthropogenic aerosols. The study identifies the critical physical processes strongly influenced by model resolution. It also highlights the benefit of applying regional refinement in future modeling studies at higher or even convection-permitting resolutions.
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Daniel J. Varon, Daniel J. Jacob, Melissa Sulprizio, Lucas A. Estrada, William B. Downs, Lu Shen, Sarah E. Hancock, Hannah Nesser, Zhen Qu, Elise Penn, Zichong Chen, Xiao Lu, Alba Lorente, Ashutosh Tewari, and Cynthia A. Randles
Geosci. Model Dev., 15, 5787–5805, https://doi.org/10.5194/gmd-15-5787-2022, https://doi.org/10.5194/gmd-15-5787-2022, 2022
Short summary
Short summary
Reducing atmospheric methane emissions is critical to slow near-term climate change. Globally surveying satellite instruments like the TROPOspheric Monitoring Instrument (TROPOMI) have unique capabilities for monitoring atmospheric methane around the world. Here we present a user-friendly cloud-computing tool that enables researchers and stakeholders to quantify methane emissions across user-selected regions of interest using TROPOMI satellite observations.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
María A. Burgos, Elisabeth Andrews, Gloria Titos, Angela Benedetti, Huisheng Bian, Virginie Buchard, Gabriele Curci, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Anton Laakso, Julie Letertre-Danczak, Marianne T. Lund, Hitoshi Matsui, Gunnar Myhre, Cynthia Randles, Michael Schulz, Twan van Noije, Kai Zhang, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Junying Sun, Ernest Weingartner, and Paul Zieger
Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, https://doi.org/10.5194/acp-20-10231-2020, 2020
Short summary
Short summary
We investigate how well models represent the enhancement in scattering coefficients due to particle water uptake, and perform an evaluation of several implementation schemes used in ten Earth system models. Our results show the importance of the parameterization of hygroscopicity and model chemistry as drivers of some of the observed diversity amongst model estimates. The definition of dry conditions and the phenomena taking place in this relative humidity range also impact the model evaluation.
Cited articles
Allen, R. J.: A 21st century northward tropical precipitation
shift caused by future anthropogenic aerosol reductions, J. Geophys. Res.-Atmos, 120, 9087–9102,
https://doi.org/10.1002/2015JD023623, 2015. a, b
Allen, R. J. and Luptowitz, R.: El Niño-like
teleconnection increases California precipitation in response to warming, Nat. Commun., 8, 16055,
https://doi.org/10.1038/ncomms16055, 2017. a
Allen, R. J., Evan, A. T., and Booth,
B. B. B.: Interhemispheric Aerosol Radiative Forcing and Tropical Precipitation Shifts during the
Late Twentieth Century, J. Climate, 28, 8219–8246, https://doi.org/10.1175/JCLI-D-15-0148.1, 2015. a
Bakker, P.,
Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W.-L., Hu,
A., Beadling, R. L., Marsland, S. J., Mernild, S. H., Saenko, O. A., Swingedouw, D., Sullivan, A.,
and Yin, J.: Fate of the Atlantic Meridional Overturning Circulation: Strong decline under
continued warming and Greenland melting, Geophys. Res. Lett., 43, 12252–12260, https://doi.org/10.1002/2016GL070457, 2016. a
Bellomo, K.,
Murphy, L. N., Cane, M. A., Clement, A. C., and Polvani, L. M.: Historical forcings as main
drivers of the Atlantic multidecadal variability in the CESM large ensemble, Clim. Dynam., 50,
3687–3698, https://doi.org/10.1007/s00382-017-3834-3, 2018. a
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K., Christensen, M., Daniau, A.-L., and Dufresne, J. : Bounding global aerosol radiative forcing of climate change, Rev. Geophys., 58, e2019RG000660, 2020. a
Booth,
B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin, N.: Aerosols implicated as
a prime driver of twentieth-century North Atlantic climate variability, Nature, 484, 228–232,
https://doi.org/10.1038/nature10946, 2012. a
Broecker, W. S.: Thermohaline Circulation, the Achilles Heel
of Our Climate System: Will Man-Made CO2 Upset the Current Balance?, Science, 278,
1582–1588, https://doi.org/10.1126/science.278.5343.1582, 1997. a
Buckley, M. W. and Marshall, J.: Observations,
inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review,
Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493, 2016. a
Caesar, L.,
Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed fingerprint of a weakening
Atlantic Ocean overturning circulation, Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-0006-5,
2018. a, b, c
Cai, W., Bi, D.,
Church, J., Cowan, T., Dix, M., and Rotstayn, L.: Pan-oceanic response to increasing anthropogenic
aerosols: Impacts on the Southern Hemisphere oceanic circulation, Geophys. Res. Lett., 33, L21707,
https://doi.org/10.1029/2006GL027513, 2006. a, b
Cai, W.,
Cowan, T., Dix, M., Rotstayn, L., Ribbe, J., Shi, G., and Wijffels, S.: Anthropogenic aerosol
forcing and the structure of temperature trends in the southern Indian Ocean, Geophys. Res. Lett.,
34, L14611, https://doi.org/10.1029/2007GL030380, 2007. a, b
Cessi, P., Bryan, K., and Zhang, R.:
Global seiching of thermocline waters between the Atlantic and the Indian-Pacific Ocean Basins,
Geophys. Res. Lett., 31, 4, https://doi.org/10.1029/2003GL019091, 2004. a
Chang, C.-Y.,
Chiang, J. C. H., Wehner, M. F., Friedman, A. R., and Ruedy, R.: Sulfate Aerosol Control of
Tropical Atlantic Climate over the Twentieth Century, J. Climate, 24, 2540–2555,
https://doi.org/10.1175/2010JCLI4065.1, 2011. a
Chang, E. K. M.,
Zheng, C., Lanigan, P., Yau, A. M. W., and Neelin, J. D.: Significant modulation of variability
and projected change in California winter precipitation by extratropical cyclone activity,
Geophys. Res. Lett., 42, 5983–5991, https://doi.org/10.1002/2015GL064424, 2015. a
Chen, X. and Tung, K.-K.: Global surface warming
enhanced by weak Atlantic overturning circulation, Nature, 559, 387–391, 2018. a
Cheng, W., Chiang, J. C. H., and
Zhang, D.: Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 Models: RCP and Historical
Simulations, J. Climate, 26, 7187–7197, https://doi.org/10.1175/JCLI-D-12-00496.1, 2013. a, b, c
Collier,
M. A., Rotstayn, L. D., Kim, K.-Y., Hirst, A. C., and Jeffrey, S. J.: Ocean circulation response
to anthropogenicaerosol and greenhouse gas forcing in the CSIRO-Mk3.6 coupled climate model,
Australian Meteorol. Ocean., 63, 27–39, https://doi.org/10.22499/2.6301.003, 2013. a, b
Cowan, T. and Cai, W.: The response of the large-scale
ocean circulation to 20th century Asian and non-Asian aerosols, Geophys. Res. Lett., 40,
2761–2767, https://doi.org/10.1002/grl.50587, 2013. a, b
Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Cassou, C., Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H., Farneti, R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies, S. M., Gusev, A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S., Navarra, A., Nurser, A. G., Pirani, A., Salas y Mélia, D., Samuels, B. L., Scheinert, M., Sidorenko, D., Treguier, A.-M., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., and Wang, Q.: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II), Part I: Mean states, Ocean Model., 73, 76–107, https://doi.org/10.1016/j.ocemod.2013.10.005, 2014. a
Danabasoglu, G., Yeager, S. G., Kim, W. M., Behrens, E.,
Bentsen, M., Bi, D., Biastoch, A., Bleck, R., Böning, C., Bozec, A., Canuto, V. M., Cassou,
C., Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H., Farneti, R., Fernandez,
E., Fogli, P. G., Forget, G., Fujii, Y., Griffies, S. M., Gusev, A., Heimbach, P., Howard, A.,
Ilicak, M., Jung, T., Karspeck, A. R., Kelley, M., Large, W. G., Leboissetier, A., Lu, J., Madec,
G., Marsland, S. J., Masina, S., Navarra, A., Nurser, A. G., Pirani, A., Romanou, A., y Mélia,
D. S., Samuels, B. L., Scheinert, M., Sidorenko, D., Sun, S., Treguier, A.-M., Tsujino, H.,
Uotila, P., Valcke, S., Voldoire, A., Wang, Q., and Yashayaev, I.: North Atlantic simulations in
Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal
variability, Ocean Model., 97, 65–90, https://doi.org/10.1016/j.ocemod.2015.11.007, 2016. a
Delworth, T. L. and Dixon, K. W.: Have
anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic
thermohaline circulation?, Geophys. Res. Lett., 33, L02606, https://doi.org/10.1029/2005GL024980, 2006. a, b
Delworth, T. L. and Mann, M. E.: Observed and
simulated multidecadal variability in the Northern Hemisphere, Clim. Dynam., 16, 661–676,
https://doi.org/10.1007/s003820000075, 2000. a
Drijfhout,
S., van Oldenborgh, G. J., and Cimatoribus, A.: Is a Decline of AMOC Causing the Warming Hole
above the North Atlantic in Observed and Modeled Warming Patterns?, J. Climate, 25, 8373–8379,
https://doi.org/10.1175/JCLI-D-12-00490.1, 2012. a
Drijfhout, S. S. and Hazeleger, W.: Detecting
Atlantic MOC Changes in an Ensemble of Climate Change Simulations, J. Climate, 20, 1571–1582,
https://doi.org/10.1175/JCLI4104.1, 2007. a
Drijfhout,
S. S., Weber, S. L., and van der Swaluw, E.: The stability of the MOC as diagnosed from model
projections for pre-industrial, present and future climates, Clim. Dynam., 37, 1575–1586,
https://doi.org/10.1007/s00382-010-0930-z, 2011. a
ECMWF: ERA5, available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last access: 14 April 2021. a
Eden, C. and Jung, T.: North Atlantic Interdecadal
Variability: Oceanic Response to the North Atlantic Oscillation (1865–1997), J. Climate, 14,
676–691, https://doi.org/10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2, 2001. a
ESGF (Earth System Grid Federation) – LLNL: Coupled Model Intercomparison Project Phase 6, available at: https://esgf-node.llnl.gov/search/cmip6/, last access: 14 April 2021. a
Evan, A. T.,
Vimont, D. J., Heidinger, A. K., Kossin, J. P., and Bennartz, R.: The role of aerosols in the
evolution of tropical North Atlantic Ocean temperature anomalies, Science, 324, 778–781, 2009. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor,
K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design
and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fofonoff, N. P. and Millard Jr.,
R.: Algorithms for the computation of fundamental properties of seawater, 44, 53 pp., 1983. a
Forster, P. M., Richardson, T., Maycock, A. C., Smith, C. J., Samset,
B. H., Myhre, G., Andrews, T., Pincus, R., and Schulz, M.: Recommendations for diagnosing
effective radiative forcing from climate models for CMIP6, J. Geophys. Res.-Atmos, 121,
12,460–12,475, https://doi.org/10.1002/2016JD025320, 2016. a
Frajka-Williams, E.,
Ansorge, I. J., Baehr, J., Bryden, H. L., Chidichimo, M. P., Cunningham, S. A., Danabasoglu, G.,
Dong, S., Donohue, K. A., Elipot, S., Heimbach, P., Holliday, N. P., Hummels, R., Jackson, L. C.,
Karstensen, J., Lankhorst, M., Le Bras, I. A., Lozier, M. S., McDonagh, E. L., Meinen, C. S.,
Mercier, H., Moat, B. I., Perez, R. C., Piecuch, C. G., Rhein, M., Srokosz, M. A., Trenberth,
K. E., Bacon, S., Forget, G., Goni, G., Kieke, D., Koelling, J., Lamont, T., McCarthy, G. D.,
Mertens, C., Send, U., Smeed, D. A., Speich, S., van den Berg, M., Volkov, D., and Wilson, C.:
Atlantic Meridional Overturning Circulation: Observed Transport and Variability,
Front. Mar. Sci., 6, 260, https://doi.org/10.3389/fmars.2019.00260, 2019. a
Grachev, A. A. and Fairall, C. W.: Dependence of
the Monin–Obukhov Stability Parameter on the Bulk Richardson Number over the Ocean,
J. Appl. Meteorol., 36, 406–414, https://doi.org/10.1175/1520-0450(1997)036<0406:DOTMOS>2.0.CO;2, 1997. a
Gregory, J. M., Dixon, K. W., Stouffer, R. J., Weaver, A. J., Driesschaert,
E., Eby, M., Fichefet, T., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenkovich, I. V., Levermann,
A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Sokolov, A. P., and Thorpe, R. B.: A model
intercomparison of changes in the Atlantic thermohaline circulation in response to increasing
atmospheric CO2 concentration, Geophys. Res. Lett., 32, 12, https://doi.org/10.1029/2005GL023209, 2005. a
Hassan, T.: acccmip6, available at: https://github.com/TaufiqHassan/acccmip6, last access: 14 April 2021. a
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G.,
Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L.,
Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang,
Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the
Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408,
https://doi.org/10.5194/gmd-11-369-2018, 2018. a
Hu, S. and Fedorov, A. V.: Indian Ocean warming can
strengthen the Atlantic meridional overturning circulation, Nat. Clim. Change, 9, 747–751,
https://doi.org/10.1038/s41558-019-0566-x, 2019. a
Huang, R. X., Cane, M. A.,
Naik, N., and Goodman, P.: Global adjustment of the thermocline in response to deepwater
formation, Geophys. Res. Lett., 27, 759–762, https://doi.org/10.1029/1999GL002365, 2000. a
Jackson, L. C.,
Peterson, K. A., Roberts, C. D., and Wood, R. A.: Recent slowing of Atlantic overturning
circulation as a recovery from earlier strengthening, Nat. Geosci., 9, 518–522,
https://doi.org/10.1038/ngeo2715, 2016. a
Johnson, H. L. and Marshall, D. P.: A Theory for
the Surface Atlantic Response to Thermohaline Variability, J. Phys. Oceanogr., 32, 1121–1132,
https://doi.org/10.1175/1520-0485(2002)032<1121:ATFTSA>2.0.CO;2, 2002. a
Kawase, M.: Establishment of Deep Ocean Circulation Driven by
Deep-Water Production, J. Phys. Oceanogr., 17, 2294–2317,
https://doi.org/10.1175/1520-0485(1987)017<2294:EODOCD>2.0.CO;2, 1987. a
Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonscheck, D.,
and Ghosh, R.: Multiple drivers of the North Atlantic warming hole, Nat. Clim. Change, 10, 667–671, 2020. a
Kirtman, B., Power, S., Adedoyin, J., Boer, G., Bojariu, R., Camilloni, I., Doblas-Reyes, F., Fiore, A., Kimoto, M., Meehl, G., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G., Vecchi, G., and Wan, H.:
Near-term Climate Change: Projections and Predictability,
in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Tech. rep.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 953–1028, 2013. a
Klein, S. A. and Hartmann, D. L.: The seasonal cycle
of low stratiform clouds, J. Climate, 6, 1587–1606, 1993. a
Knight, J. R.,
Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.: A signature of persistent natural
thermohaline circulation cycles in observed climate, Geophys. Res. Lett., 32, L20708,
https://doi.org/10.1029/2005GL024233, 2005. a
Kostov, Y., Armour, K. C., and
Marshall, J.: Impact of the Atlantic meridional overturning circulation on ocean heat storage and
transient climate change, Geophys. Res. Lett., 41, 2108–2116, https://doi.org/10.1002/2013GL058998, 2014. a, b, c
Levitus, S., Antonov, J. I., Boyer, T. P.,
Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D.,
Yarosh, E. S., and Zweng, M. M.: World ocean heat content and thermosteric sea level change
(0–2000 m), 1955–2010, Geophys. Res. Lett., 39, 10, https://doi.org/10.1029/2012GL051106, 2012. a
Liu, W. and Liu, Z.: A diagnostic indicator of the
stability of the Atlantic meridional overturning circulation in CCSM3, J. Climate, 26, 1926–1938,
2013. a
Liu, W., Xie, S.-P., Liu, Z., and Zhu, J.:
Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming
climate, Sci. Adv., 3, 1, https://doi.org/10.1126/sciadv.1601666, 2017. a, b, c
Liu, W., Fedorov, A., and
Sévellec, F.: The Mechanisms of the Atlantic Meridional Overturning Circulation Slowdown
Induced by Arctic Sea Ice Decline, J. Climate, 32, 977–996, https://doi.org/10.1175/JCLI-D-18-0231.1, 2019. a, b, c
Liu, W., Fedorov, A. V., Xie, S.-P.,
and Hu, S.: Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming
climate, Sci. Adv., 6, 26,
https://doi.org/10.1126/sciadv.aaz4876, 2020. a
Ma, X., Liu, W., Allen,
R. J., Huang, G., and Li, X.: Dependence of regional ocean heat uptake on anthropogenic warming
scenarios, Sci. Adv., 6, eabc0303, 2020. a
Maronga, B.: Monin–Obukhov Similarity Functions for the
Structure Parameters of Temperature and Humidity in the Unstable Surface Layer: Results from
High-Resolution Large-Eddy Simulations, J. Atmos. Sci., 71, 716–733,
https://doi.org/10.1175/JAS-D-13-0135.1, 2014. a
Marshall, J.,
Donohoe, A., Ferreira, D., and McGee, D.: The ocean's role in setting the mean position of the
Inter-Tropical Convergence Zone, Clim. Dynam., 42, 1967–1979, https://doi.org/10.1007/s00382-013-1767-z,
2014. a
Marshall, J., Scott, J. R., Armour, K. C., Campin, J. M., Kelley, M., and Romanou, A.: The ocean's
role in the transient response of climate to abrupt greenhouse gas forcing, Clim. Dynam., 44,
2287–2299, https://doi.org/10.1007/s00382-014-2308-0, 2015. a
McCarthy, G., Frajka-Williams, E., Johns, W. E.,
Baringer, M. O., Meinen, C. S., Bryden, H. L., Rayner, D., Duchez, A., Roberts, C., and
Cunningham, S. A.: Observed interannual variability of the Atlantic meridional overturning
circulation at 26.5∘ N, Geophys. Res. Lett., 39, L19609, https://doi.org/10.1029/2012GL052933,
2012. a
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F.,
Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting equilibrium climate
sensitivity and transient climate response from the CMIP6 Earth system models, Sci. Adv., 6,
eaba1981, 2020. a
Menary, M. B., Roberts, C. D., Palmer, M. D., Halloran, P. R., Jackson, L.,
Wood, R. A., Müller, W. A., Matei, D., and Lee, S.-K.: Mechanisms of aerosol-forced AMOC
variability in a state of the art climate model, J. Geophys. Res.-Oceans, 118, 2087–2096,
https://doi.org/10.1002/jgrc.20178, 2013. a, b, c, d
Menary, M. B., Robson, J., Allan,
R. P., Booth, B. B. B., Cassou, C., Gastineau, G., Gregory, J., Hodson, D., Jones, C., Mignot, J.,
Ringer, M., Sutton, R., Wilcox, L., and Zhang, R.: Aerosol-Forced AMOC Changes in CMIP6 Historical
Simulations, Geophys. Res. Lett., 47, e2020GL088166, https://doi.org/10.1029/2020GL088166, 2020. a, b, c, d
Murphy, L. N., Bellomo,
K., Cane, M., and Clement, A.: The role of historical forcings in simulating the observed Atlantic
multidecadal oscillation, Geophys. Res. Lett., 44, 2472–2480, https://doi.org/10.1002/2016GL071337, 2017. a
National Aeronautics and Space Administration: Modern-Era Retrospective analysis for Research and Applications, version2, available at: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/, last access: 14 April 2021. a
National Center for Atmospheric Research: NCEP/NCAR Reanalysis, available at: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, last access: 14 April 2021. a
National Oceanography Centre: RAPID, available at: https://rapid.ac.uk/rapidmoc/rapid_data/datadl.php, last access: 14 April 2021. a
NCEI-NOAA: Global Ocean Heat and Salt Content, available at: https://www.ncei.noaa.gov/access/global-ocean-heat-content/,
last access: 14 April 2021. a
NOAA-PSL: GISS Surface Temperature Analysis, available at: https://psl.noaa.gov/data/gridded/data.gistemp.html,
last access: 14 April 2021a. a
NOAA-PSL: Jones (CRU) Air Temperature Anomalies Version 4: CRUTEM4, available at: https://psl.noaa.gov/data/gridded/data.crutem4.html#detail, last access: 14 April 2021b. a
NOAA-PSL: NOAA Global Surface Temperature (NOAAGlobalTemp), available at: https://psl.noaa.gov/data/gridded/data.noaaglobaltemp.html,
last access: 14 April 2021. a
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R., and van Vuuren, D. P.: A new scenario framework for climate change research:
the concept of shared socioeconomic pathways, Climatic Change, 122, 387–400,
https://doi.org/10.1007/s10584-013-0905-2, 2014. a
Otterå, O. H.,
Bentsen, M., Drange, H., and Suo, L.: External forcing as a metronome for Atlantic multidecadal
variability, Nat. Geosci., 3, 688–694, https://doi.org/10.1038/ngeo955, 2010. a
Palmer, M. D. and McNeall, D. J.: Internal
variability of Earth's energy budget simulated by CMIP5 climate models, Environ. Res. Lett., 9,
034016, https://doi.org/10.1088/1748-9326/9/3/034016, 2014. a
Rahmstorf, S.: On the freshwater forcing and transport of
the Atlantic thermohaline circulation, Clim. Dynam., 12, 799–811, https://doi.org/10.1007/s003820050144,
1996. a
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A.,
Rutherford, S., and Schaffernicht, E. J.: Exceptional twentieth-century slowdown in Atlantic Ocean
overturning circulation, Nat. Clim. Change, 5, 475–480, https://doi.org/10.1038/nclimate2554, 2015. a, b, c, d
Sévellec, F.,
Fedorov, A. V., and Liu, W.: Arctic sea-ice decline weakens the Atlantic Meridional Overturning
Circulation, Nat. Clim. Change, 7, 604–610, https://doi.org/10.1038/nclimate3353, 2017. a, b
Smeed, D. A., McCarthy, G. D., Cunningham, S. A.,
Frajka-Williams, E., Rayner, D., Johns, W. E., Meinen, C. S., Baringer, M. O., Moat, B. I.,
Duchez, A., and Bryden, H. L.: Observed decline of the Atlantic meridional overturning circulation
2004–2012, Ocean Sci., 10, 29–38, https://doi.org/10.5194/os-10-29-2014, 2014. a
Smeed, D. A., Josey, S. A., Beaulieu, C., Johns,
W. E., Moat, B. I., Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden,
H. L., and McCarthy, G. D.: The North Atlantic Ocean Is in a State of Reduced Overturning,
Geophys. Res. Lett., 45, 1527–1533, https://doi.org/10.1002/2017GL076350, 2018. a
Smith, C. J., Kramer, R. J., Myhre, G.,
Alterskjær, K., Collins, W., Sima, A., Boucher, O., Dufresne, J.-L., Nabat, P., Michou, M.,
Yukimoto, S., Cole, J., Paynter, D., Shiogama, H., O'Connor, F. M., Robertson, E., Wiltshire, A.,
Andrews, T., Hannay, C., Miller, R., Nazarenko, L., Kirkevåg, A., Olivié, D., Fiedler, S.,
Lewinschal, A., Mackallah, C., Dix, M., Pincus, R., and Forster, P. M.: Effective radiative
forcing and adjustments in CMIP6 models, Atmos. Chem. Phys., 20, 9591–9618,
https://doi.org/10.5194/acp-20-9591-2020, 2020. a
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (Eds.):
Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, New York, pp. 996, 2007. a
Talley, L. D.: Freshwater transport estimates and the global
overturning circulation: Shallow, deep and throughflow components, Prog. Oceanogr., 78, 257–303,
https://doi.org/10.1016/j.pocean.2008.05.001, 2008. a
Thorpe, R., Gregory, J. M., Johns, T., Wood, R., and Mitchell, J.: Mechanisms determining the
Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted
coupled climate model, J. Climate, 14, 3102–3116, 2001. a
Toll, V.,
Christensen, M., Quaas, J., and Bellouin, N.: Weak average liquid-cloud-water response to
anthropogenic aerosols, Nature, 572, 51–55, 2019. a
Weijer, W.,
Cheng, W., Garuba, O., Hu, A., and Nadiga, B.: CMIP6 models predict significant 21st century
decline of the Atlantic Meridional Overturning Circulation, Geophys. Res. Lett., 47, e2019GL086075, 2020. a
Winton, M., Griffies, S. M., Samuels, B. L., Sarmiento, J. L., and Frölicher, T. L.:
Connecting Changing Ocean Circulation with Changing Climate, J. Climate, 26, 2268–2278,
https://doi.org/10.1175/JCLI-D-12-00296.1, 2013. a
Woods Hole Oceanographic Institution: WHOI OAFlux Project, available at: http://oaflux.whoi.edu/, last access: 14 April 2021. a
Yan, X., Zhang, R., and Knutson, T. R.:
Underestimated AMOC Variability and Implications for AMV and Predictability in CMIP Models,
Geophys. Res. Lett., 45, 4319–4328, https://doi.org/10.1029/2018GL077378, 2018. a
Zhang, R.: Latitudinal dependence of Atlantic meridional
overturning circulation (AMOC) variations, Geophys. Res. Lett., 37, 16, https://doi.org/10.1029/2010GL044474, 2010. a
Zhang, R., Delworth, T. L., Sutton, R.,
Hodson, D. L. R., Dixon, K. W., Held, I. M., Kushnir, Y., Marshall, J., Ming, Y., Msadek, R.,
Robson, J., Rosati, A. J., Ting, M., and Vecchi, G. A.: Have Aerosols Caused the Observed Atlantic
Multidecadal Variability?, J. Atmos. Sci., 70, 1135–1144, https://doi.org/10.1175/JAS-D-12-0331.1, 2013. a, b, c
Zhao, J. and Johns, W.: Wind-forced interannual variability
of the Atlantic Meridional Overturning Circulation at 26.5∘ N, J. Geophys. Res.-Oceans,
119, 2403–2419, https://doi.org/10.1002/2013JC009407, 2014. a
Zhu, C. and Liu, Z.: Weakening Atlantic overturning
circulation causes South Atlantic salinity pile-up, Nat. Clim. Change, 10, 998–1003, 2020. a
Short summary
State-of-the-art climate models yield robust, externally forced changes in the Atlantic meridional overturning circulation (AMOC), the bulk of which are due to anthropogenic aerosol perturbations to net surface shortwave radiation and sea surface temperature. AMOC-related feedbacks act to reinforce this aerosol-forced response, largely due to changes in sea surface salinity (and hence sea surface density), with temperature- and cloud-related feedbacks acting to mute the initial response.
State-of-the-art climate models yield robust, externally forced changes in the Atlantic...
Altmetrics
Final-revised paper
Preprint