Articles | Volume 21, issue 1
https://doi.org/10.5194/acp-21-505-2021
https://doi.org/10.5194/acp-21-505-2021
Research article
 | 
15 Jan 2021
Research article |  | 15 Jan 2021

On the best locations for ground-based polar stratospheric cloud (PSC) observations

Matthias Tesche, Peggy Achtert, and Michael C. Pitts

Related authors

A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024,https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Multi-section reference value for the analysis of horizontally scanning aerosol lidar observations
Juseon Shin, Gahyeong Kim, Dukhyeon Kim, Matthias Tesche, Gahyeon Park, and Youngmin Noh
Atmos. Meas. Tech., 17, 397–406, https://doi.org/10.5194/amt-17-397-2024,https://doi.org/10.5194/amt-17-397-2024, 2024
Short summary
A first global height-resolved cloud condensation nuclei data set derived from spaceborne lidar measurements
Goutam Choudhury and Matthias Tesche
Earth Syst. Sci. Data, 15, 3747–3760, https://doi.org/10.5194/essd-15-3747-2023,https://doi.org/10.5194/essd-15-3747-2023, 2023
Short summary
TrackMatcher – a tool for finding intercepts in tracks of geographical positions
Peter Bräuer and Matthias Tesche
Geosci. Model Dev., 15, 7557–7572, https://doi.org/10.5194/gmd-15-7557-2022,https://doi.org/10.5194/gmd-15-7557-2022, 2022
Short summary
Locations for the best lidar view of mid-level and high clouds
Matthias Tesche and Vincent Noel
Atmos. Meas. Tech., 15, 4225–4240, https://doi.org/10.5194/amt-15-4225-2022,https://doi.org/10.5194/amt-15-4225-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Radiative effect of thin cirrus clouds in the extratropical lowermost stratosphere and tropopause region
Reinhold Spang, Rolf Müller, and Alexandru Rap
Atmos. Chem. Phys., 24, 1213–1230, https://doi.org/10.5194/acp-24-1213-2024,https://doi.org/10.5194/acp-24-1213-2024, 2024
Short summary
Statistical analysis of observations of polar stratospheric clouds with a lidar in Kiruna, northern Sweden
Peter Voelger and Peter Dalin
Atmos. Chem. Phys., 23, 5551–5565, https://doi.org/10.5194/acp-23-5551-2023,https://doi.org/10.5194/acp-23-5551-2023, 2023
Short summary
Distribution of cross-tropopause convection within the Asian monsoon region from May through October 2017
Corey E. Clapp, Jessica B. Smith, Kristopher M. Bedka, and James G. Anderson
Atmos. Chem. Phys., 23, 3279–3298, https://doi.org/10.5194/acp-23-3279-2023,https://doi.org/10.5194/acp-23-3279-2023, 2023
Short summary
Measurement report: Plume heights of the April 2021 La Soufrière eruptions from GOES-17 side views and GOES-16–MODIS stereo views
Ákos Horváth, James L. Carr, Dong L. Wu, Julia Bruckert, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 12311–12330, https://doi.org/10.5194/acp-22-12311-2022,https://doi.org/10.5194/acp-22-12311-2022, 2022
Short summary
A global view on stratospheric ice clouds: assessment of processes related to their occurrence based on satellite observations
Ling Zou, Sabine Griessbach, Lars Hoffmann, and Reinhold Spang
Atmos. Chem. Phys., 22, 6677–6702, https://doi.org/10.5194/acp-22-6677-2022,https://doi.org/10.5194/acp-22-6677-2022, 2022
Short summary

Cited articles

Achtert, P. and Tesche, M.: Assessing lidar-based classification schemes for polar stratospheric clouds based on 16 years of measurements at Esrange, Sweden, J. Geophys. Res., 119, 1386–1405, https://doi.org/10.1002/2013JD020355, 2014. a, b, c
Achtert, P., Karlsson Andersson, M., Khosrawi, F., and Gumbel, J.: On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space–borne lidar, Atmos. Chem. Phys., 12, 3791–3798, https://doi.org/10.5194/acp-12-3791-2012, 2012. a
Adhikari, L., Wang, Z. and Liu, D.: Microphysical properties of Antarctic polar stratospheric clouds and their dependence on tropospheric cloud systems, J. Geophys. Res., 115, D00H18, https://doi.org/10.1029/2009JD012125, 2010. a
Adriani, A., Massoli, P., di Donfrancesco, G., Cairo, F., Moriconi, M., and Snels, M.: Climatology of polar stratospheric clouds based on lidar observations from 1993 to 2001 over McMurdo Station, Antarctica, J. Geophys. Res., 109, D24211, https://doi.org/10.1029/2004JD004800, 2005. a
Blum, U., Fricke, K. H., Müller, K. P., Siebert, J., and Baumgarten, G.: Long-term lidar observations of polar stratospheric clouds at Esrange in northern Sweden, Tellus B, 57, 412–422, 2005. a
Short summary
We combine spaceborne lidar observations of clouds in the troposphere and stratosphere to assess the outcome of ground-based polar stratospheric cloud (PSC) observations that are often performed at the mercy of tropospheric clouds. We find that the outcome of ground-based lidar measurements of PSCs depends on the location of the measurement. We also provide recommendations regarding the most suitable sites in the Arctic and Antarctic.
Altmetrics
Final-revised paper
Preprint