Articles | Volume 21, issue 6
Atmos. Chem. Phys., 21, 4979–5014, 2021
https://doi.org/10.5194/acp-21-4979-2021
Atmos. Chem. Phys., 21, 4979–5014, 2021
https://doi.org/10.5194/acp-21-4979-2021

Research article 31 Mar 2021

Research article | 31 Mar 2021

Constraints on global aerosol number concentration, SO2 and condensation sink in UKESM1 using ATom measurements

Ananth Ranjithkumar et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Ananth Ranjithkumar on behalf of the Authors (07 Feb 2021)  Author's response    Author's tracked changes    Manuscript
ED: Publish as is (08 Feb 2021) by Veli-Matti Kerminen
Download
Short summary
The effect aerosols have on climate can be better understood by studying their vertical and spatial distribution throughout the atmosphere. We use observation data from the ATom campaign and evaluate the vertical profile of aerosol number concentration, sulfur dioxide and condensation sink using the UKESM (UK Earth System Model). We identify uncertainties in key atmospheric processes that help improve their theoretical representation in global climate models.
Altmetrics
Final-revised paper
Preprint