Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-4979-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-4979-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constraints on global aerosol number concentration, SO2 and condensation sink in UKESM1 using ATom measurements
Ananth Ranjithkumar
CORRESPONDING AUTHOR
School of Earth and Environment, University of Leeds, LS2 9JT, United
Kingdom
Engineering Research Accelerator and Centre for Atmospheric Particle
Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
School of Earth and Environment, University of Leeds, LS2 9JT, United
Kingdom
Christina Williamson
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO 80309, USA
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Andrew Rollins
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO 80309, USA
Kirsty Pringle
School of Earth and Environment, University of Leeds, LS2 9JT, United
Kingdom
Agnieszka Kupc
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Faculty of Physics, Aerosol Physics and Environmental Physics,
University of Vienna, 1090 Vienna, Austria
Nathan Luke Abraham
NCAS-Climate, University of Cambridge, CB2 1EW, UK
Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
Charles Brock
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Ken Carslaw
School of Earth and Environment, University of Leeds, LS2 9JT, United
Kingdom
Data sets
Model data Ananth Ranjithkumar https://doi.org/10.5281/zenodo.4088640
ATom: merged atmospheric chemistry, trace gases, and aerosols S. C. Wofsy, S. Afshar, H. M. Allen, E. C. Apel, E. C. Asher, B. Barletta, J. Bent, H. Bian, B. C. Biggs, D. R. Blake, N. Blake, I. Bourgeois, C. A. Brock, W. H. Brune, J. W. Budney, T. P. Bui, A. Butler, P. Campuzano-Jost, C. S. Chang, M. Chin, R. Commane, G. Corr, and L. H. Zeng https://doi.org/10.3334/ORNLDAAC/1581
Short summary
The effect aerosols have on climate can be better understood by studying their vertical and spatial distribution throughout the atmosphere. We use observation data from the ATom campaign and evaluate the vertical profile of aerosol number concentration, sulfur dioxide and condensation sink using the UKESM (UK Earth System Model). We identify uncertainties in key atmospheric processes that help improve their theoretical representation in global climate models.
The effect aerosols have on climate can be better understood by studying their vertical and...
Altmetrics
Final-revised paper
Preprint