Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-4403-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-4403-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving the sectional Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosols of the Weather Research and Forecasting-Chemistry (WRF-Chem) model with the revised Gridpoint Statistical Interpolation system and multi-wavelength aerosol optical measurements: the dust aerosol observation campaign at Kashi, near the Taklimakan Desert, northwestern China
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Ying Zhang
State Environment Protection Key Laboratory of Satellite Remote
Sensing, Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing 100101, China
Zhengqiang Li
CORRESPONDING AUTHOR
State Environment Protection Key Laboratory of Satellite Remote
Sensing, Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing 100101, China
Jie Chen
National Meteorological Information Center, China Meteorological
Administration, Beijing 100081, China
Kaitao Li
State Environment Protection Key Laboratory of Satellite Remote
Sensing, Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing 100101, China
Related authors
No articles found.
Cheng Fan, Gerrit de Leeuw, Xiaoxi Yan, Jiantao Dong, Hanqing Kang, Chengwei Fang, Zhengqiang Li, and Ying Zhang
Atmos. Chem. Phys., 25, 11951–11973, https://doi.org/10.5194/acp-25-11951-2025, https://doi.org/10.5194/acp-25-11951-2025, 2025
Short summary
Short summary
This study describes the analysis of time series of the MODIS-derived aerosol optical depth (AOD) over China between 2010 and 2024. Emission reduction policies were effective with respect to reducing the AOD until 2018. Thereafter, the overall reduction until the end of the study was very small due to unfavorable meteorological factors cancelling favorable anthropogenic effects and resulting in an AOD increase during extended periods. The variations over different areas in China are discussed.
Ying Zhang, Yuanyuan Wei, Gerrit de Leeuw, Ouyang Liu, Yu Chen, Yang Lv, Yuanxun Zhang, and Zhengqiang Li
Atmos. Chem. Phys., 25, 10643–10660, https://doi.org/10.5194/acp-25-10643-2025, https://doi.org/10.5194/acp-25-10643-2025, 2025
Short summary
Short summary
Nitrogen dioxide (NO2) is a major pollutant that, at high concentrations, may affect human health. We evaluated the remote sensing column NO2 in relation to near-surface concentrations throughout the day and found that the prohibition of vertical transport in the morning and the mixing in the afternoon resulted in different relations between the near-surface (NS) and total column NO2 concentrations. These different relationships have consequences for the use of satellite remote sensing to estimate NS NO2 concentrations.
Cheng Chen, Xuefeng Lei, Zhenhai Liu, Haorang Gu, Oleg Dubovik, Pavel Litvinov, David Fuertes, Yujia Cao, Haixiao Yu, Guangfeng Xiang, Binghuan Meng, Zhenwei Qiu, Xiaobing Sun, Jin Hong, and Zhengqiang Li
Earth Syst. Sci. Data, 17, 3497–3519, https://doi.org/10.5194/essd-17-3497-2025, https://doi.org/10.5194/essd-17-3497-2025, 2025
Short summary
Short summary
Particulate Observing Scanning Polarization (POSP) on board the second GaoFen-5 (GF-5(02)) satellite is the first space-borne ultraviolet–visible–near-infrared–shortwave-infrared (UV–VIS–NIR–SWIR) multi-spectral cross-track scanning polarimeter. Due to its wide spectral range and polarimetric capabilities, POSP measurements provide rich information for aerosol and surface characterization. We present the detailed aerosol/surface products generated from POSP's first 18 months of operation, including spectral aerosol optical depth, aerosol-size-/absorption-related properties, surface black-sky and white-sky albedos, etc.
Qiansi Tu, Frank Hase, Ying Zhang, Jiaxin Fang, Yanwu Jiang, Xiaofan Li, Matthias Schneider, Zhuolin Yang, Xin Zhang, and Zhengqiang Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-966, https://doi.org/10.5194/egusphere-2025-966, 2025
Short summary
Short summary
Understanding GHG and air pollutant concentrations and emissions characteristics in the Qinghai-Tibetan Plateau cities remains limited. We present the first CO2, CH4 and CO column abundances using a portal FTIR spectrometer in Xining in 2024. Ground-based data exceeded satellite and model estimates, indicating higher local emissions. Significant CO discrepancies and a strong ∆XCO–∆XCO2 correlation under easterly winds highlight the value of portable FTIR for urban emission studies in the QTP.
Zhe Ji, Zhengqiang Li, Gerrit de Leeuw, Zihan Zhang, Yan Ma, Zheng Shi, Cheng Fan, and Qiao Yao
EGUsphere, https://doi.org/10.5194/egusphere-2025-91, https://doi.org/10.5194/egusphere-2025-91, 2025
Short summary
Short summary
The global AODs for the one of few single-angle polarimeters currently in orbit, Particulate Observing Scanning Polarimeter (POSP) has been proposed. We compared them with observations from the AERONET site and MODIS AOD products. From 19314 collocations, we find an overall high accuracy for the POSP AOD product, with correlation coefficients (R) of 0.914, R2 of 0.825, a root mean square error (RMSE) of 0.085, the fraction within in expected error (EE) of 78.5 %.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 16, 2425–2448, https://doi.org/10.5194/essd-16-2425-2024, https://doi.org/10.5194/essd-16-2425-2024, 2024
Short summary
Short summary
A global gap-free high-resolution air pollutant dataset (LGHAP v2) was generated to provide spatially contiguous AOD and PM2.5 concentration maps with daily 1 km resolution from 2000 to 2021. This gap-free dataset has good data accuracies compared to ground-based AOD and PM2.5 concentration observations, which is a reliable database to advance aerosol-related studies and trigger multidisciplinary applications for environmental management, health risk assessment, and climate change analysis.
Jie Luo, Miao Hu, Jibing Qiu, Kaitao Li, Hao He, Yuping Sun, and Xiulin Geng
EGUsphere, https://doi.org/10.5194/egusphere-2024-1155, https://doi.org/10.5194/egusphere-2024-1155, 2024
Preprint archived
Short summary
Short summary
In this work, we first calculate the scattering signal returned from partially-coated black carbon based on the SP2 measurement, and then the mixing states were retrieved using Mie theory, and the difference between the retrieved and "true" mixing states can be the uncertainties of the SP2 -Represent measurement. In addition, the effects on the direct radiative forcing are also evaluated.
Ouyang Liu, Zhengqiang Li, Yangyan Lin, Cheng Fan, Ying Zhang, Kaitao Li, Peng Zhang, Yuanyuan Wei, Tianzeng Chen, Jiantao Dong, and Gerrit de Leeuw
Atmos. Meas. Tech., 17, 377–395, https://doi.org/10.5194/amt-17-377-2024, https://doi.org/10.5194/amt-17-377-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NO2) is a trace gas which is important for atmospheric chemistry and may affect human health. To understand processes leading to harmful concentrations, it is important to monitor NO2 concentrations near the surface and higher up. To this end, a Pandora instrument has been installed in Beijing. An overview of the first year of data shows the large variability on diurnal to seasonal timescales and how this is affected by wind speed and direction and chemistry.
Jie Luo, Zhengqiang Li, Chenchong Zhang, Qixing Zhang, Yongming Zhang, Ying Zhang, Gabriele Curci, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 7647–7666, https://doi.org/10.5194/acp-22-7647-2022, https://doi.org/10.5194/acp-22-7647-2022, 2022
Short summary
Short summary
The fractal black carbon was applied to re-evaluate the regional impacts of morphologies on aerosol–radiation interactions (ARIs), and the effects were compared between the US and China. The regional-mean clear-sky ARI is significantly affected by the BC morphology, and relative differences of 17.1 % and 38.7 % between the fractal model with a Df of 1.8 and the spherical model were observed in eastern China and the northwest US, respectively.
Jie Luo, Zhengqiang Li, Cheng Fan, Hua Xu, Ying Zhang, Weizhen Hou, Lili Qie, Haoran Gu, Mengyao Zhu, Yinna Li, and Kaitao Li
Atmos. Meas. Tech., 15, 2767–2789, https://doi.org/10.5194/amt-15-2767-2022, https://doi.org/10.5194/amt-15-2767-2022, 2022
Short summary
Short summary
A single model is difficult to represent various shapes of dust. We proposed a tunable model to represent dust with various shapes. Two tunable parameters were used to represent the effects of the erosion degree and binding forces from the mass center. Thus, the model can represent various dust shapes by adjusting the tunable parameters. Besides, the applicability of the spheroid model in calculating the optical properties and polarimetric characteristics is evaluated.
Kaixu Bai, Ke Li, Mingliang Ma, Kaitao Li, Zhengqiang Li, Jianping Guo, Ni-Bin Chang, Zhuo Tan, and Di Han
Earth Syst. Sci. Data, 14, 907–927, https://doi.org/10.5194/essd-14-907-2022, https://doi.org/10.5194/essd-14-907-2022, 2022
Short summary
Short summary
The Long-term Gap-free High-resolution Air Pollutant concentration dataset, providing gap-free aerosol optical depth (AOD) and PM2.5 and PM10 concentration with a daily 1 km resolution for 2000–2020 in China, is generated and made publicly available. This is the first long-term gap-free high-resolution aerosol dataset in China and has great potential to trigger multidisciplinary applications in Earth observations, climate change, public health, ecosystem assessment, and environment management.
Cheng Fan, Zhengqiang Li, Ying Li, Jiantao Dong, Ronald van der A, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 7723–7748, https://doi.org/10.5194/acp-21-7723-2021, https://doi.org/10.5194/acp-21-7723-2021, 2021
Short summary
Short summary
Emission control policy in China has resulted in the decrease of nitrogen dioxide concentrations, which however leveled off and stabilized in recent years, as shown from satellite data. The effects of the further emission reduction during the COVID-19 lockdown in 2020 resulted in an initial improvement of air quality, which, however, was offset by chemical and meteorological effects. The study shows the regional dependence over east China, and results have a wider application than China only.
Yang Zhang, Zhengqiang Li, Zhihong Liu, Yongqian Wang, Lili Qie, Yisong Xie, Weizhen Hou, and Lu Leng
Atmos. Meas. Tech., 14, 1655–1672, https://doi.org/10.5194/amt-14-1655-2021, https://doi.org/10.5194/amt-14-1655-2021, 2021
Short summary
Short summary
The aerosol fine-mode fraction (FMF) is an important parameter reflecting the content of man-made aerosols. This study carried out the retrieval of FMF in China based on multi-angle polarization data and validated the results. The results of this study can contribute to the FMF retrieval algorithm of multi-angle polarization sensors. At the same time, a high-precision FMF dataset of China was obtained, which can provide basic data for atmospheric environment research.
Qiaoyun Hu, Haofei Wang, Philippe Goloub, Zhengqiang Li, Igor Veselovskii, Thierry Podvin, Kaitao Li, and Mikhail Korenskiy
Atmos. Chem. Phys., 20, 13817–13834, https://doi.org/10.5194/acp-20-13817-2020, https://doi.org/10.5194/acp-20-13817-2020, 2020
Short summary
Short summary
This study presents the characteristics of Taklamakan dust particles derived from lidar measurements collected in the dust aerosol observation field campaign. It provides comprehensive parameters for Taklamakan dust properties and vertical distributions of Taklamakan dust. This paper also points out the importance of polluted dust which was frequently observed in the field campaign. The results contribute to improving knowledge about dust and reducing uncertainties in the climatic model.
Ying Zhang, Zhengqiang Li, Yu Chen, Gerrit de Leeuw, Chi Zhang, Yisong Xie, and Kaitao Li
Atmos. Chem. Phys., 20, 12795–12811, https://doi.org/10.5194/acp-20-12795-2020, https://doi.org/10.5194/acp-20-12795-2020, 2020
Short summary
Short summary
Observation of atmospheric aerosol components plays an important role in reducing uncertainty in climate assessment. In this study, an improved remote sensing method which can better distinguish scattering components is developed, and the aerosol components in the atmospheric column over China are retrieved based on the Sun–sky radiometer Observation NETwork (SONET). The component distribution shows there could be a sea salt component in northwest China from a paleomarine source in desert land.
Cited articles
Adebiyi, A. A. and Kok, J. F.: Climate models miss most of the coarse dust in
the atmosphere, Sci. Adv., 6, eaaz9507, https://doi.org/10.1126/sciadv.aaz9507, 2020.
Bannister, R. N.: A review of operational methods of variational and
ensemble-variational data assimilation, Q. J. Roy. Meteor. Soc., 143, 607–633, https://doi.org/10.1002/qj.2982, 2017.
Bao, Y., Zhu, L., Guan, Q., Guan, Y., Lu, Q., Petropoulos, G. P., Che, H.,
Ali, G., Dong, Y., Tang, Z., Gu, Y., Tang, W., and Hou, Y.: Assessing the
impact of Chinese FY-3/MERSI AOD data assimilation on air quality forecasts:
sand dust events in northeast China, Atmos. Environ., 205, 78–89,
https://doi.org/10.1016/j.atmosenv.2019.02.026, 2019.
Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical Note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties” Module using data from the MILAGRO campaign, Atmos. Chem. Phys., 10, 7325–7340, https://doi.org/10.5194/acp-10-7325-2010, 2010.
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous
particles: an investigative review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.
Calil, P. H. R., Doney, S. C., Yumimoto, K., Eguchi, K., and Takemura, T.:
Episodic upwelling and dust deposition as bloom triggers in low-nutrient,
low-chlorophyll regions, J. Geophys. Res., 116, C06030,
https://doi.org/10.1029/2010jc006704, 2011.
Chang, W.: A revised gsi code (v1.0-alpha) for the WRF-Chem MOSAIC aerosols, figsharem https://doi.org/10.6084/m9.figshare.14246627.v2, 2021a.
Chang, W.: Table 2 data, figshare, https://doi.org/10.6084/m9.figshare.14256284.v1, 2021b.
Chen, D., Liu, Z., Schwartz, C. S., Lin, H.-C., Cetola, J. D., Gu, Y., and Xue, L.: The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States, Geosci. Model Dev., 7, 2709–2715, https://doi.org/10.5194/gmd-7-2709-2014, 2014.
Chen, D., Liu, Z., Ban, J., Zhao, P., and Chen, M.: Retrospective analysis of 2015–2017 wintertime PM2.5 in China: response to emission regulations and the role of meteorology, Atmos. Chem. Phys., 19, 7409–7427, https://doi.org/10.5194/acp-19-7409-2019, 2019.
Chen, L., Gao, Y., Zhang, M., Fu, J. S., Zhu, J., Liao, H., Li, J., Huang, K., Ge, B., Wang, X., Lam, Y. F., Lin, C.-Y., Itahashi, S., Nagashima, T., Kajino, M., Yamaji, K., Wang, Z., and Kurokawa, J.: MICS-Asia III: multi-model comparison and evaluation of aerosol over East Asia, Atmos. Chem. Phys., 19, 11911–11937, https://doi.org/10.5194/acp-19-11911-2019, 2019.
Chen, S.-H. and Sun, W.-Y.: A one-dimensional time dependent cloud model,
J. Meteorol. Soc. Jpn., 80, 99–118, https://doi.org/10.2151/jmsj.80.99, 2002.
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010.
Cheng, T., Wang, H., Xu, Y., Li, H., and Tian, L.: Climatology of aerosol
optical properties in northern China, Atmos. Environ., 40, 1495–1509,
https://doi.org/10.1016/j.atmosenv.2005.10.047, 2006.
Cheng, X., Liu, Y., Xu, X., You, W., Zang, Z., Gao, L., Chen, Y., Su, D.,
and Yan, P.: Lidar data assimilation method based on CRTM and WRF-Chem
models and its application in PM2.5 forecasts in Beijing,
Sci. Total Environ., 682, 541–552, https://doi.org/10.1016/j.scitotenv.2019.05.186, 2019.
Descombes, G., Auligné, T., Vandenberghe, F., Barker, D. M., and Barré, J.: Generalized background error covariance matrix model (GEN_BE v2.0), Geosci. Model Dev., 8, 669–696, https://doi.org/10.5194/gmd-8-669-2015, 2015.
Developmental Testbed Center: Gridpoint Statistical Interpolation (GSI), available at: https://dtcenter.org/sites/default/files/comGSIv3.7_EnKFv1.3.tar.gz,
last access: March 2021.
Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E., Nowak, S., Andreae, M. O., Kandler, K., Saeed, T., Piketh, S., Seibert, D., Williams, E., and Doussin, J.-F.: Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content, Atmos. Chem. Phys., 19, 15503–15531, https://doi.org/10.5194/acp-19-15503-2019, 2019.
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang,
P., Eck, T. F., Volten, H., Munoz, O., Veihelmann, B., van der Zande, W. J.,
Leon, J.-F., Sorokin, M., and Slutsker, I.: Application of spheroid models
to account for aerosol particle nonsphericity in remote sensing of desert
dust, J. Geophys. Res., 111, D11208, https://doi.org/10.1029/2005JD006619, 2006.
Fan, J., Shang, Y., Chen, Q., Wang, S., Zhang, X., Zhang, L., Zhang, Y., Xu,
X., and Jiang, P.: Investigation of the “dust reservoir effect” of the
Tarim Basin using WRF-GOCART model, Arab. J. Geosci., 13, 214, https://doi.org/10.1007/s12517-020-5154-x, 2020.
Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C.,
Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of
Houston using a fully coupled meteorology-chemistry-aerosol model,
J. Geophys. Res.-Atmos., 111, D21305, https://doi.org/10.1029/2005jd006721, 2006.
Feng, S., Jiang, F., Jiang, Z., Wang, H., Cai, Z., and Zhang, L.: Impact of
3DVAR assimilation of surface PM2.5 observations on PM2.5
forecasts over China during wintertime, Atmos. Environ., 187, 34–49,
https://doi.org/10.1016/j.atmosenv.2018.05.049, 2018.
Ge, J. M., Huang, J. P., Xu, C. P., Qi, Y. L., and Liu, H. Y.:
Characteristics of Taklimakan dust emission and distribution: A satellite
and reanalysis field perspective, J. Geophys. Res.-Atmos., 119, 11772–11783,
https://doi.org/10.1002/2014jd022280, 2014.
Ge, J. M., Liu, H., Huang, J., and Fu, Q.: Taklimakan Desert nocturnal low-level jet: climatology and dust activity, Atmos. Chem. Phys., 16, 7773–7783, https://doi.org/10.5194/acp-16-7773-2016, 2016.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O.,
and Lin, S.-J.: Sources and distributions of dust aerosols simulated with
the GOCART model, J. Geophys. Res., 106, 20255–20273,
https://doi.org/10.1029/2000JD000053, 2001.
Giorgi, F. and Mearns, L. O.: Introduction to special section: Reginal
climate modeling revisited, J. Geophys. Res., 104, 6335–6352,
https://doi.org/10.1029/98JD02072, 1999.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ., 39, 6957–7975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
He, J., Zhang, Y., Wang, K., Chen, Y., Leung, L. R., Fan, J., Li, M., Zheng,
B., Zhang, Q., Duan, F., and He, K.: Multi-year application of WRF-CAM5 over
East Asia – Part I: Comprehensive evaluation and formation regimes of O3 and PM2.5, Atmos. Environ., 165, 122–142,
https://doi.org/10.1016/j.atmosenv.2017.06.015, 2017.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and
data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/s0034-4257(98)00031-5, 1998.
Hong, J., Mao, F., Min, Q., Pan, Z., Wang, W., Zhang, T., and Gong, W.:
Improved PM2.5 predictions of WRF-Chem via the integration of
Himawari-8 satellite data and ground observations, Environ. Pollut., 263,
114451, https://doi.org/10.1016/j.envpol.2020.114451, 2020.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust
aerosols over East Asian arid and semiarid regions, J. Geophys. Res., 119,
11398–11416, https://doi.org/10.1002/2014jd021796, 2014.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113,
D13103, https://doi.org/10.1029/2008JD009944, 2008.
Jia, R., Liu, Y., Chen, B., Zhang, Z., and Huang, J.: Source and
transportation of summer dust over the Tibetan Plateau, Atmos. Environ.,
123, 210–219, https://doi.org/10.1016/j.atmosenv.2015.10.038, 2015.
Jiang, Z., Liu, Z., Wang, T., Schwartz, C. S., Lin, H.-C., and Jiang, F.:
Probing into the impact of 3DVAR assimilation of surface PM10
observations over China using process analysis, J. Geophys. Res., 118,
6738–6749, https://doi.org/10.1002/jgrd.50495, 2013.
Jin, J., Lin, H. X., Segers, A., Xie, Y., and Heemink, A.: Machine learning for observation bias correction with application to dust storm data assimilation, Atmos. Chem. Phys., 19, 10009–10026, https://doi.org/10.5194/acp-19-10009-2019, 2019.
Kok, J. F.: A scaling theory for the size distribution of emitted dust
aerosols suggests climate models underestimate the size of the global dust
cycle, P. Natl. Acad. Sci. USA, 108, 1016–1021,
https://doi.org/10.1073/pnas.1014798108, 2011.
Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L.,
Ward, D. S., Albani, S., and Haustein, K.: Smaller desert dust cooling
effect estimated from analysis of dust size and abundance, Nat. Geosci.,
10, 274–278, https://doi.org/10.1038/ngeo2912, 2017.
Kumar, R., Monache, L. D., Bresch, J., Saide, P. E., Tang, Y., Liu, Z.,
de Silva, A. M., Alessandrini, S., Pfister, G., Edwards, D., Lee, P., and
Djalaova, I.: Toward improving short-term predictions of fine particulate
matter over the United States via assimilation of satellite aerosol optical
depth retrievals, J. Geophys. Res., 124, 2753–2773,
https://doi.org/10.1029/2018jd029009, 2019.
Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wendisch, M.: Aerosol solar radiative forcing near the Taklimakan Desert based on radiative transfer and regional meteorological simulations during the Dust Aerosol Observation-Kashi campaign, Atmos. Chem. Phys., 20, 10845–10864, https://doi.org/10.5194/acp-20-10845-2020, 2020.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, Natl. Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150,
2017.
Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction, Atmos. Chem. Phys., 13, 4265–4278, https://doi.org/10.5194/acp-13-4265-2013, 2013.
Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu,
X. F., Zhao, W., Tian, Q. J., Deng, R. R., Su, X. L., Huang, B., Qiao, Y. L.,
Cui, W. Y., Hu, Y., Gong, C. L., Wang, Y. Q., Wang, X. F., Wang, J. P., Du,
W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprehensive study of optical,
physical, chemical, and radiative properties of total columnar atmospheric
aerosols over China An overview of sun-sky radiometer observation network
(SONET) measurements, B. Am. Meteorol. Soc., 99,
739–755,
https://doi.org/10.1175/BMAS-D-17-0133.1, 2018.
Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y.-H., and Wang, T.:
Three-dimensional variational assimilation of MODIS aerosol optical depth:
Implementation and application to a dust storm over East Asia, J. Geophys.
Res., 116, D23206, https://doi.org/10.1029/2011JD016159, 2011.
Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and
Wu, R.: Multiconstituent data assimilation with WRF-Chem/DART: Potential for
adjusting anthropogenic emissions and improving air quality forecasts over
eastern China, J. Geophys. Res.-Atmos., 124, 7393–7412,
https://doi.org/10.1029/2019JD030421, 2019.
Ma, C., Wang, T., Jiang, Z., Wu, H., Zhao, M., Zhuang, B., Li, S., Xie, M.,
Li, M., Liu, J., and Wu, R.: Importance of bias correction in data
assimilation of multiple observations over eastern China using
WRF-Chem/DART, J. Geophys. Res.-Atmos., 125, e2019JD031465,
https://doi.org/10.1029/2019JD031465, 2020.
Malm, W. C. and Hand, J. L.: An examination of the physical and optical
properties of aerosols collected in the IMPROVE program, Atmos. Environ.,
41, 3407–3427, https://doi.org/10.1016/j.atmosenv.2006.12.012, 2007.
Massart, S., Pajot, B., Piacentini, A., and Pannekoucke, O.: On the merits
of using a 3D-FGAT assimilation scheme with an outer loop for atmospheric
situations governed by transport, Mon. Weather Rev., 138, 4509–4522,
https://doi.org/10.1175/2010MWR3237.1, 2010.
Meng, L., Yang, X., Zhao, T., He, Q., Lu, H., Mamtimin, A., Huo, W., Yang,
F., and Liu, C.: Modeling study on three-dimensional distribution of dust
aerosols during a dust storm over the Tarim Basin, Northwest China, Atmos.
Res., 218, 285–295, https://doi.org/10.1016/j.atmores.2018.12.006, 2019.
Okada, K. and Kai, K.: Atmospheric mineral particles collected at Qira in
the Taklamakan Desert, China, Atmos. Environ., 38, 6927–6935,
https://doi.org/10.1016/j.atmosenv.2004.03.078, 2004.
Okada, K., Heintzenberg, J., Kai, K., and Qin, Y.: Shape of atmospheric
mineral particles collected in three Chinese arid-regions,
Geophys. Res. Lett., 28, 3123–3126, https://doi.org/10.1029/2000GL012798, 2001.
Pagowski, M., Grell, G. A., McKeen, S. A., Peckham, S. E., and Devenyi, D.:
Three-dimensional variational data assimilation of ozone and fine
particulate matter observations: some results using the Weather Research and
Forecasting – Chemistry model and Grid-point Statistical Interpolation,
Q. J. Roy. Meteor. Soc., 136, 2014–2024, https://doi.org/10.1002/qj.700, 2010.
Pagowski, M., Liu, Z., Grell, G. A., Hu, M., Lin, H.-C., and Schwartz, C. S.: Implementation of aerosol assimilation in Gridpoint Statistical Interpolation (v. 3.2) and WRF-Chem (v. 3.4.1), Geosci. Model Dev., 7, 1621–1627, https://doi.org/10.5194/gmd-7-1621-2014, 2014.
Pang, J., Liu, Z., Wang, X., Bresch, J., Ban, J., Chen, D., and Kim, J.:
Assimilating AOD retrievals from GOCI and VIIRS to forecast surface
PM2.5 episodes over eastern China, Atmos. Environ., 179, 288–304,
https://doi.org/10.1016/j.atmosenv.2018.02.011, 2018.
Pang, J., Wang, X., Shao, M., Chen, W., and Chang, M.: Aerosol optical depth
assimilation for a modal aerosol model: Implementation and application in
AOD forecasts over East Asia, Sci. Total Environ., 719, 137430,
https://doi.org/10.1016/j.scitotenv.2020.137430, 2020.
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's
spectral statistical-interpolation analysis system, Mon. Weather Rev., 120,
1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992.
Peng, Z., Liu, Z., Chen, D., and Ban, J.: Improving PM2.5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter, Atmos. Chem. Phys., 17, 4837–4855, https://doi.org/10.5194/acp-17-4837-2017, 2017.
Peng, Z., Lei, L., Liu, Z., Sun, J., Ding, A., Ban, J., Chen, D., Kou, X., and Chu, K.: The impact of multi-species surface chemical observation assimilation on air quality forecasts in China, Atmos. Chem. Phys., 18, 17387–17404, https://doi.org/10.5194/acp-18-17387-2018, 2018.
Penner, J. E., Hegg, D., and Leaitch, R.: Unraveling the role of aerosols in
climate change, Environ. Sci. Technol., 35, 332–340,
https://doi.org/10.1021/es0124414, 2001.
Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Numerical
aspects of the application of recursive filters to variational statistical
analysis, Part I: Spatially homogeneous and isotropic gaussian covariances,
Mon. Weather Rev., 131, 1524–1535,
https://doi.org/10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2, 2003a.
Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Numerical
aspects of the application of recursive filters to variational statistical
analysis, Part II: spatially inhomogeneous and anisotropic general
covariances, Mon. Weather Rev., 131, 1536–1548, https://doi.org/10.1175//2543.1, 2003b.
Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and Hyer, E.: Aerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts, Atmos. Chem. Phys., 13, 10425–10444, https://doi.org/10.5194/acp-13-10425-2013, 2013.
Saide, P. E., Kim, J., Song, C. H., Choi, M., Cheng, Y., and Carmichael, G.
R.: Assimilation of next generation geostationary aerosol optical depth
retrievals to improve air quality simulations, Geophys. Res. Lett., 41,
9188–9196, https://doi.org/10.1002/2014GL062089, 2014.
Saide, P. E., Gao, M., Lu, Z., Goldberg, D. L., Streets, D. G., Woo, J.-H., Beyersdorf, A., Corr, C. A., Thornhill, K. L., Anderson, B., Hair, J. W., Nehrir, A. R., Diskin, G. S., Jimenez, J. L., Nault, B. A., Campuzano-Jost, P., Dibb, J., Heim, E., Lamb, K. D., Schwarz, J. P., Perring, A. E., Kim, J., Choi, M., Holben, B., Pfister, G., Hodzic, A., Carmichael, G. R., Emmons, L., and Crawford, J. H.: Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ, Atmos. Chem. Phys., 20, 6455–6478, https://doi.org/10.5194/acp-20-6455-2020, 2020.
Schwartz, C. S., Liu, Z., Lin, H.-C., and McKeen, S. A.: Simultaneous
three-dimensional variational assimilation of surface fine particulate
patter and MODIS aerosol optical depth, J. Geophys. Res., 117, D13202,
https://doi.org/10.1029/2011JD017383, 2012.
Sič, B., El Amraoui, L., Piacentini, A., Marécal, V., Emili, E., Cariolle, D., Prather, M., and Attié, J.-L.: Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth, Atmos. Meas. Tech., 9, 5535–5554, https://doi.org/10.5194/amt-9-5535-2016, 2016.
Sorribas, M., Olmo, F. J., Quirantes, A., Lyamani, H., Gil-Ojeda, M.,
Alados-Arboledas, L., and Horvath, H.: Role of spheroidal particles in
closure studies for aerosol microphysical-optical properties,
Q. J. Roy. Meteor. Soc., 141, 2700–2707, https://doi.org/10.1002/qj.2557, 2015.
Tang, Y., Pagowski, M., Chai, T., Pan, L., Lee, P., Baker, B., Kumar, R., Delle Monache, L., Tong, D., and Kim, H.-C.: A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods, Geosci. Model Dev., 10, 4743–4758, https://doi.org/10.5194/gmd-10-4743-2017, 2017.
Tewari, M., Chen, F., Wang, W., Dudhai, J., LeMone, M. A., Mitchell, K., Ek,
M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification of the unified Noah land-surface model in the WRF model, in: 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, American Meteorological Society, Seattle, Washington, USA, 14 January 2004, 11–15, 2004.
Tian, Y., Wang, Z., Pan, X., Li, J., Yang, T., Wang, D., Liu, X., Liu, H.,
Zhang, Y., Lei, S., Sun, Y., Fu, P., Uno, I., and Wang, Z.: Influence of the
morphological change in natural Asian dust during transport: A modeling
study for a typical dust event over northern China, Sci. Total Environ., 739, 139791, https://doi.org/10.1016/j.scitotenv.2020.139791, 2020.
Toon, O. B., Pollack, J. B., and Khare, B. N.: The optical constants of
several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and
sodium chloride, J. Geophys. Res., 81, 5733–5748, https://doi.org/10.1029/JC081i033p05733, 1976.
Wang, D., You, W., Zang, Z., Pan, X., He, H., and Liang, Y.: A
three-dimensional variational data assimilation system for a size-resolved
aerosol model: Implementation and application for particulate matter and
gaseous pollutant forecasts across China, Sci. China Earth Sci., 63,
1366–1380, https://doi.org/10.1007/s11430-019-9601-4, 2020.
Wang, K.-Y., Lary, D. J., Shallcross, D. E., Hall, S. M., and Pyle, J. A.: A
review on the use of the adjoint method in four-dimensional
atmospheric-chemistry data assimilation, Q. J. Roy. Meteor. Soc., 127,
2181–2204, https://doi.org/10.1002/qj.49712757616, 2001.
Wu, W.-S., Purser, R. J., and Parrish, D. F.: three-dimensional variational
analysis with spatially inhomogeneous covariances, Mon. Weather Rev., 130, 2905–2916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2, 2002.
Xia, X., Min, J., Shen, F., Wang, Y., and Yang, C.: Aerosol data
assimilation using data from Fengyun-3A and MODIS: application to a dust
storm over East Asia in 2011, Adv. Atmos. Sci., 36, 1–14,
https://doi.org/10.1007/s00376-018-8075-9, 2019a.
Xia, X., Min, J., Wang, Y., Shen, F., Yang, C., and Sun, Z.: Assimilating
Himawari-8 AHI aerosol observations with a rapid-update data assimilation
system, Atmos. Environ., 215, 116866, https://doi.org/10.1016/j.atmosenv.2019.116866,
2019b.
Zang, Z., Li, Z., Pan, X., Hao, Z., and You, W.: Aerosol data assimilation
and forecasting experiments using aircraft and surface observations during
CalNex, Tellus B, 68, 29812, https://doi.org/10.3402/tellusb.v68.29812, 2016.
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical
mechanism for large-scale applications, J. Geophys. Res., 104, 30387–30415,
https://doi.org/10.1029/1999JD900876, 1999.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
simulating aerosol interactions and chemistry (MOSAIC), J. Geophys. Res.,
113, D13204, https://doi.org/10.1029/2007JD008782, 2008.
Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J. D., and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments, Atmos. Chem. Phys., 10, 8821–8838, https://doi.org/10.5194/acp-10-8821-2010, 2010.
Zhao, J., Ma, X., Wu, S., and Sha, T.: Dust emission and transport in
Northwest China: WRF-Chem simulation and comparisons with multi-sensor
observation, Atmos. Res., 241, 104978, https://doi.org/10.1016/j.atmosres.2020.104978,
2020.
Short summary
Aerosol simulation in WRF-Chem often uses the MOSAIC aerosol mechanism. Still, we need variational data assimilation (DA) for the MOSAIC aerosols to blend aerosol optical measurements. This study provides a developed GSI variational DA system, with a tangent linear operator designed for multi-source and multi-wavelength aerosol optical measurements. We successfully applied the DA system in an aerosol field campaign to assimilate aerosol optical data in northwestern China.
Aerosol simulation in WRF-Chem often uses the MOSAIC aerosol mechanism. Still, we need...
Altmetrics
Final-revised paper
Preprint