Articles | Volume 21, issue 5
https://doi.org/10.5194/acp-21-3919-2021
https://doi.org/10.5194/acp-21-3919-2021
Research article
 | 
17 Mar 2021
Research article |  | 17 Mar 2021

Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning

Roland Stirnberg, Jan Cermak, Simone Kotthaus, Martial Haeffelin, Hendrik Andersen, Julia Fuchs, Miae Kim, Jean-Eudes Petit, and Olivier Favez

Viewed

Total article views: 6,972 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
5,210 1,668 94 6,972 111 174
  • HTML: 5,210
  • PDF: 1,668
  • XML: 94
  • Total: 6,972
  • BibTeX: 111
  • EndNote: 174
Views and downloads (calculated since 27 Jul 2020)
Cumulative views and downloads (calculated since 27 Jul 2020)

Viewed (geographical distribution)

Total article views: 6,972 (including HTML, PDF, and XML) Thereof 6,958 with geography defined and 14 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 08 Nov 2025
Download
Short summary
Air pollution endangers human health and poses a problem particularly in densely populated areas. Here, an explainable machine learning approach is used to analyse periods of high particle concentrations for a suburban site southwest of Paris to better understand its atmospheric drivers. Air pollution is particularly excaberated by low temperatures and low mixed layer heights, but processes vary substantially between and within seasons.
Share
Altmetrics
Final-revised paper
Preprint