Articles | Volume 21, issue 1
https://doi.org/10.5194/acp-21-315-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-315-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model
Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zurich, Switzerland
Peter A. Alpert
Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
Pablo Corral Arroyo
Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
now at: Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zurich, Switzerland
Beiping Luo
Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zurich, Switzerland
Frederic Schneider
Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
Jacinta Xto
Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
Thomas Huthwelker
Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
Camelia N. Borca
Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
Katja D. Henzler
Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
Jörg Raabe
Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232 Villigen, Switzerland
Benjamin Watts
Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232 Villigen, Switzerland
Hartmut Herrmann
Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
Thomas Peter
Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zurich, Switzerland
Markus Ammann
Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
Ulrich K. Krieger
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zurich, Switzerland
Model code and software
Photochemical degradation of iron(III)-citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model: PRAD model Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger https://doi.org/10.3929/ethz-b-000451609
Video supplement
Shift of Mie-resonance pattern with time Jing Dou https://doi.org/10.5446/47955
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in...
Altmetrics
Final-revised paper
Preprint