Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-2585-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-2585-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Hydrolyzed amino acids in fine and coarse atmospheric aerosol in Nanchang, China: concentrations, compositions, sources and possible bacterial degradation state
Ren-Guo Zhu
Jiangxi Province Key Laboratory of the Causes and Control of
Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
Hua-Yun Xiao
CORRESPONDING AUTHOR
School of Environmental Science and Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
Li Luo
Jiangxi Province Key Laboratory of the Causes and Control of
Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
Hongwei Xiao
Jiangxi Province Key Laboratory of the Causes and Control of
Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
Zequn Wen
Department of Earth Sciences, Faculty of Land Resource Engineering,
Kunming University of Science and Technology, Kunming 650021, China
Yuwen Zhu
Jiangxi Province Key Laboratory of the Causes and Control of
Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
School of Earth Sciences, East China University of Technology,
Nanchang 330013, China
Xiaozheng Fang
Jiangxi Province Key Laboratory of the Causes and Control of
Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
Yuanyuan Pan
Jiangxi Province Key Laboratory of the Causes and Control of
Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
Zhenping Chen
Jiangxi Province Key Laboratory of the Causes and Control of
Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
Related authors
Ren-Guo Zhu, Hua-Yun Xiao, Meiju Yin, Hao Xiao, Zhongkui Zhou, Yuanyuan Pan, Guo Wei, and Cheng Liu
Atmos. Chem. Phys., 25, 7699–7718, https://doi.org/10.5194/acp-25-7699-2025, https://doi.org/10.5194/acp-25-7699-2025, 2025
Short summary
Short summary
The concentrations and δ15N isotopic values of CAAs (combined amino acids) in surface soil and plants from the Gobi Desert, as well as in PM2.5 samples from four cities in Northern China, were measured. CAAs transported by Gobi dust were rich in alanine, glycine and glutamic acid. Glycine and leucine in Gobi Desert sources exhibited δ15N depletion by more than 6 ‰ compared to their values in urban PM2.5. Substantial protein-N deposition can be transported by the Gobi Desert to northern China over brief periods.
Wei Guo, Zicong Li, Renguo Zhu, Zhongkui Zhou, Hongwei Xiao, and Huayun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3793, https://doi.org/10.5194/egusphere-2024-3793, 2025
Short summary
Short summary
Through a comprehensive year-long analysis of major polar organic compounds in PM2.5, we elucidate the complex composition and sources of organic aerosols (OAs) within the urban environment of Nanchang, China. Given the significant health and environmental impacts of PM2.5, our research provides critical insights into the contributions of primary emissions and secondary formation processes to urban OA, and confirm the sources and the influencing factors of OA during pollution episodes.
Ren-Guo Zhu, Hua-Yun Xiao, Liqin Cheng, Huixiao Zhu, Hongwei Xiao, and Yunyun Gong
Atmos. Chem. Phys., 22, 14019–14036, https://doi.org/10.5194/acp-22-14019-2022, https://doi.org/10.5194/acp-22-14019-2022, 2022
Short summary
Short summary
Sugars and amino acids are major classes of organic components in atmospheric fine particles and play important roles in the atmosphere. To identify their sources in different regions, the concentrations and compositions of sugar amino acids in fine particles were analysed. Our findings suggest that combining specific sugar tracers and chemical profiles of combined amino acids in local emission sources can identify various source characteristics of primary sources.
Ren-Guo Zhu, Hua-Yun Xiao, Meiju Yin, Hao Xiao, Zhongkui Zhou, Yuanyuan Pan, Guo Wei, and Cheng Liu
Atmos. Chem. Phys., 25, 7699–7718, https://doi.org/10.5194/acp-25-7699-2025, https://doi.org/10.5194/acp-25-7699-2025, 2025
Short summary
Short summary
The concentrations and δ15N isotopic values of CAAs (combined amino acids) in surface soil and plants from the Gobi Desert, as well as in PM2.5 samples from four cities in Northern China, were measured. CAAs transported by Gobi dust were rich in alanine, glycine and glutamic acid. Glycine and leucine in Gobi Desert sources exhibited δ15N depletion by more than 6 ‰ compared to their values in urban PM2.5. Substantial protein-N deposition can be transported by the Gobi Desert to northern China over brief periods.
Yu Xu, Yi-Jia Ma, Ting Yang, Qi-Bin Sun, Yu-Chen Wang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2409, https://doi.org/10.5194/egusphere-2025-2409, 2025
Short summary
Short summary
This study represents the inaugural instance of simultaneous comprehensive characterization of organosulfates and nitrogen-containing organic compounds (detected in both ESI+ and ESI- modes) in PM2.5 in tropical marine areas with minimal anthropogenic pollution. The overall results provide the observation-based molecular evidence that marine emissions may play a significant role in the formation of aromatic and aliphatic organic sulfur and nitrogen aerosols in the South China Sea.
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2967–2978, https://doi.org/10.5194/acp-25-2967-2025, https://doi.org/10.5194/acp-25-2967-2025, 2025
Short summary
Short summary
Previous measurement–model comparisons of atmospheric isoprene levels showed a significant unidentified source of isoprene in some northern Chinese cities during winter. Here, the first combination of large-scale observations and field combustion experiments provides novel insights into biomass burning emissions as a significant source of isoprene-derived organosulfates during winter in northern cities of China.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2763–2780, https://doi.org/10.5194/acp-25-2763-2025, https://doi.org/10.5194/acp-25-2763-2025, 2025
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of nitrogen-containing organic compounds (NOCs) in PM2.5 during winter were compared among cities with different energy consumption patterns. The aerosol NOC pollution during winter in China is closely associated with the intensity of precursor emissions and the aqueous-phase processes. Our results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter in China.
Wei Guo, Zicong Li, Renguo Zhu, Zhongkui Zhou, Hongwei Xiao, and Huayun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3793, https://doi.org/10.5194/egusphere-2024-3793, 2025
Short summary
Short summary
Through a comprehensive year-long analysis of major polar organic compounds in PM2.5, we elucidate the complex composition and sources of organic aerosols (OAs) within the urban environment of Nanchang, China. Given the significant health and environmental impacts of PM2.5, our research provides critical insights into the contributions of primary emissions and secondary formation processes to urban OA, and confirm the sources and the influencing factors of OA during pollution episodes.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Yi-Jia Ma, Yu Xu, Ting Yang, Hong-Wei Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 24, 4331–4346, https://doi.org/10.5194/acp-24-4331-2024, https://doi.org/10.5194/acp-24-4331-2024, 2024
Short summary
Short summary
This study provides field-based evidence about the differential impacts of combustion of fresh and aged biomass materials on aerosol nitrogen-containing organic compounds (NOCs) in different seasons in Ürümqi, bridging the linkages between the observations and previous laboratory studies showing the formation mechanisms of NOCs.
Ting Yang, Yu Xu, Qing Ye, Yi-Jia Ma, Yu-Chen Wang, Jian-Zhen Yu, Yu-Sen Duan, Chen-Xi Li, Hong-Wei Xiao, Zi-Yue Li, Yue Zhao, and Hua-Yun Xiao
Atmos. Chem. Phys., 23, 13433–13450, https://doi.org/10.5194/acp-23-13433-2023, https://doi.org/10.5194/acp-23-13433-2023, 2023
Short summary
Short summary
In this study, 130 OS species were quantified in ambient fine particulate matter (PM2.5) collected in urban and suburban Shanghai (East China) in the summer of 2021. The daytime OS formation was concretized based on the interactions among OSs, ultraviolet (UV), ozone (O3), and sulfate. Our finding provides field evidence for the influence of photochemical process and anthropogenic sulfate on OS formation and has important implications for the mitigation of organic particulate pollution.
Yu Xu, Xin-Ni Dong, Chen He, Dai-She Wu, Hong-Wei Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 23, 6775–6788, https://doi.org/10.5194/acp-23-6775-2023, https://doi.org/10.5194/acp-23-6775-2023, 2023
Short summary
Short summary
The air pollution associated with fine particles and secondary organic aerosol is not weakened by the application of mist cannon trucks but rather is aggravated. Our results provide not only new insights into the formation processes of aerosol water-soluble organic compounds associated with the water mist sprayed by mist cannon trucks in the road atmospheric environment but also crucial information for the decision makers to regulate the operation of mist cannon trucks in many cities in China.
Ren-Guo Zhu, Hua-Yun Xiao, Liqin Cheng, Huixiao Zhu, Hongwei Xiao, and Yunyun Gong
Atmos. Chem. Phys., 22, 14019–14036, https://doi.org/10.5194/acp-22-14019-2022, https://doi.org/10.5194/acp-22-14019-2022, 2022
Short summary
Short summary
Sugars and amino acids are major classes of organic components in atmospheric fine particles and play important roles in the atmosphere. To identify their sources in different regions, the concentrations and compositions of sugar amino acids in fine particles were analysed. Our findings suggest that combining specific sugar tracers and chemical profiles of combined amino acids in local emission sources can identify various source characteristics of primary sources.
Cited articles
Amato, P., Demeer, F., Melaouhi, A., Fontanella, S., Martin-Biesse, A.-S., Sancelme, M., Laj, P., and Delort, A.-M.: A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms, Atmos. Chem. Phys., 7, 4159–4169, https://doi.org/10.5194/acp-7-4159-2007, 2007.
Barbaro, E., Feltracco, M., Cesari, D., Padoan, S., Zangrando, R., Contini,
D., Barbante, C., and Gambaro, A.: Characterization of the water soluble
fraction in ultrafine, fine, and coarse atmospheric aerosol, Sci. Total
Environ., 658, 1423–1439, https://doi.org/10.1016/j.scitotenv.2018.12.298,
2019.
Batista, F. C., Ravelo, A. C., Crusius, J., Casso, M. A., and McCarthy, M.
D.: Compound specific amino acid δ15N in marine sediments: A new
approach for studies of the marine nitrogen cycle, Geochim. Cosmochim. Ac.,
142, 553–569, https://doi.org/10.1016/j.gca.2014.08.002, 2014.
Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R.,
Zibuschka, F., and Puxbaum, H.: The contribution of bacteria and fungal
spores to the organic carbon content of cloud water, precipitation and
aerosols, Atmos. Res., 64, 109–119, https://doi.org/10.1016/S0169-8095(02)00084-4, 2002.
Bigg, E. K.: Sources, nature and influence on climate of marine airborne
particles, Environ. Chem., 4, 155–161, https://doi.org/10.1071/EN07001, 2007.
Bol, R., Ostle, N. J., and Petzke, K. J.: Compound specific plant amino acid
δ15N values differ with functional plant strategies in temperate
grassland, J. Plant Nutr. Soil Sci., 165, 661–667,
https://doi.org/10.1002/jpln.200290000, 2002.
Bowers, R. M., Clements, N., Emerson, J. B., Wiedinmyer, C., Hannigan, M.
P., and Fierer, N.: Seasonal Variability in Bacterial and Fungal Diversity
of the Near-Surface Atmosphere, Environ. Sci. Technol., 47, 12097–12106,
https://doi.org/10.1021/es402970s, 2013.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments:
Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?,
Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Calleja, M. L., Batista, F., Peacock, M., Kudela, R., and McCarthy, M. D.:
Changes in compound specific δ15N amino acid signatures and d l ratios in marine dissolved organic matter induced by heterotrophic
bacterial reworking, Mar. Chem., 149, 32–44,
https://doi.org/10.1016/j.marchem.2012.12.001, 2013.
Chen, Y., Yang, G. P., Liu, L., Zhang, P. Y., and Leng, W. S.: Sources, behaviors and degradation of dissolved organic matter in the East China Sea, J. Mar. Syst., 155, 84–97, https://doi.org/10.1016/j.jmarsys.2015.11.005, 2016.
Chikaraishi, Y., Ogawa, N. O., Kashiyama, Y., Takano, Y., Suga, H.,
Tomitani, A., Miyashita, H., Kitazato, H., and Ohkouchi, N.: Determination
of aquatic food-web structure based on compound-specific nitrogen isotopic
composition of amino acids, Limnol. Oceanogr. Meth., 7, 740–750, https://doi.org/10.4319/lom.2009.7.740, 2009.
Cowie, G. L. and Hedges, J. I.: Sources and reactivities of amino acids in a coastal marine environment, Limnol. Oceanogr., 37, 703–724, https://doi.org/10.4319/lo.1992.37.4.0703, 1992.
Cowie, G. L. and Hedges, J. I.: Biochemical indicators of diagenetic alteration in natural organic matter mixtures, Nature, 369, 304–307, https://doi.org/10.1038/369304a0, 1994.
Dauwe, B. and Middelburg, J. J.: Amino Acids and Hexosamines as Indicators
of Organic Matter Degradation State in North Sea Sediments, Limnol.
Oceanogr., 43, 782–798, https://doi.org/10.4319/lo.1998.43.5.0782, 1998.
Dauwe, B., Middelburg, J. J., Herman, P. M. J., and Heip, C. H. R.: Linking DiageneticAlteration of Amino Acids and Bulk Organic Matter Reactivity, Limnol. Oceanogr., 44, 1809–1814, https://doi.org/10.4319/lo.1999.44.7.1809, 1999.
Després, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A.,
Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M., Pöschl,
U., and Jaenicke, R.: Primary biological aerosol particles in the
atmosphere: a review, Tellus B, 64, 15598,
https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Di Filippo, P. D., Pomata, D., Riccardi, C., Buiarelli, F., Gallo, V., and
Quaranta, A.: Free and combined amino acids in size-segregated atmospheric
aerosol samples, Atmos. Environ., 98, 179–189,
https://doi.org/10.1016/j.atmosenv.2014.08.069, 2014.
Feltracco, M., Barbaro, E., Kirchgeorg, T., Spolaor, A., Turetta, C.,
Zangrando, R., Barbante, C., and Gambaro, A.: Free and combined L-and
D-amino acids in Arctic aerosol, Chemosphere, 220, 412–421,
https://doi.org/10.1016/j.chemosphere.2018.12.147, 2019.
Fogel, M. L. and Tuross, N.: Transformation of plant biochemicals to geological macromolecules during early diagenesis, Oecologia, 120, 336–346, https://doi.org/10.1007/s004420050867, 1999.
Gorzelska, K. and Galloway, J. N.: Amine nitrogen in the atmospheric
environment over the North Atlantic Ocean, Global Biogeochem. Cy., 4,
309–333, https://doi.org/10.1029/GB004i003p00309, 1990.
Haan, D. O. D., Corrigan, A. L., Smith, K. W., Stroik, D. R., Turley, J. J.,
Lee, F. E., Tolbert, M. A., Jimenez, J. L., Cordova, K. E., and Ferrell, G.
R.: Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids,
Environ. Sci. Technol., 43, 2818–2824, https://doi.org/10.1021/es803534f, 2009.
Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., Fröhlich-Nowoisky, J., Tobo, Y., Després, V. R., Garcia, E., Gochis, D. J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D. A., Andreae, M. O., Jimenez, J. L., Gallagher, M., Kreidenweis, S. M., Bertram, A. K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, 2013.
Husárová, S., Vaïtilingom, M., Deguillaume, L., Traikia, M.,
Vinatier, V., Sancelme, M., Amato, P., Matulová, M., and Delort, A.-M.:
Biotransformation of methanol and formaldehyde by bacteria isolated from
clouds. Comparison with radical chemistry, Atmos. Environ., 45, 6093–6102,
https://doi.org/10.1016/j.atmosenv.2011.06.035, 2011.
Ji, C. X., Yang, G. P., Chen, Y., and Zhang, P. Y.: Distribution, degradation and bioavailability of dissolved organic matter in the East China Sea, Biogeochemistry, 142, 189–207, https://doi.org/10.1007/s10533-018-0529-8, 2019.
Jiang, Z., Liu, J., Chen, J., Chen, Q., Yan, X., Xuan, J., and Zeng, J.:
Responses of summer phytoplankton community to drastic environmental changes
in the Changjiang (Yangtze River) estuary during the past 50 years, Water
Res., 54, 1–11, https://doi.org/10.1016/j.watres.2014.01.032, 2014.
Joung, Y. S. and Buie, C. R.: Aerosol generation by raindrop impact on
soil, Nat. Commun., 6, 6083–6083, https://doi.org/10.1038/ncomms7083, 2015.
Koolman, J., and Röhm, K.-H.: Color atlas of biochemistry, second edition, Thieme Stuttgart, 480 pp., New York, ISBN 1588902471, 2005.
Kuznetsova, M., Lee, C., and Aller, J.: Characterization of the
proteinaceous matter in marine aerosols, Mar. Chem., 96, 359–377,
https://doi.org/10.1016/j.marchem.2005.03.007, 2005.
Leck, C. and Bigg, E. K.: Source and evolution of the marine aerosol – A
new perspective, Geophys. Res. Lett., 32, L19803, https://doi.org/10.1029/2005gl023651, 2005a.
Leck, C. and Bigg, E. K.: Biogenic particles in the surface microlayer and
overlaying atmosphere in the central Arctic Ocean during summer, Tellus B, 57, 305–316, https://doi.org/10.3402/tellusb.v57i4.16546, 2005b.
Leck, C. and Keith Bigg, E.: Comparison of sources and nature of the
tropical aerosol with the summer high Arctic aerosol, Tellus B, 60, 118–126, https://doi.org/10.1111/j.1600-0889.2007.00315.x, 2008.
Liu, F., Lai, S., Tong, H., Lakey, P. S. J., Shiraiwa, M., Weller, M. G.,
Pöschl, U., and Kampf, C. J.: Release of free amino acids upon oxidation
of peptides and proteins by hydroxyl radicals, Anal. Bioanal. Chem., 409,
2411–2420, https://doi.org/10.1007/s00216-017-0188-y, 2017.
Mace, K. A., Artaxo, P., and Duce, R. A.: Water-soluble organic nitrogen in
Amazon Basin aerosols during the dry (biomass burning) and wet seasons, J.
Geophys. Res.-Atmos, 108, 4512, https://doi.org/10.1029/2003JD003557, 2003.
Matos, J. T. V., Duarte, R. M. B. O., and Duarte, A. C.: Challenges in the
identification and characterization of free amino acids and proteinaceous
compounds in atmospheric aerosols: A critical review, Trends Analyt. Chem.,
75, 97–107, https://doi.org/10.1016/j.trac.2015.08.004, 2016.
Mcclelland, J. W. and Montoya, J. P.: Trophic relationships and the
nitrogen isotopic composition of amino acids in plankton, Ecol., 83,
2173–2180, https://doi.org/10.2307/3072049, 2002.
McCarthy, M. D., Benner, R., Lee, C., Hedges, J. I., and Fogel, M. L.: Amino
acid carbon isotopic fractionation patterns in oceanic dissolved organic
matter: an unaltered photoautotrophic source for dissolved organic nitrogen
in the ocean?, Mar. Chem., 92, 123–134, https://doi.org/10.1016/j.marchem.2004.06.021,
2004.
McCarthy, M. D., Benner, R., Lee, C., and Fogel, M. L.: Amino acid nitrogen
isotopic fractionation patterns as indicators of heterotrophy in plankton,
particulate, and dissolved organic matter, Geochim. Cosmochim. Ac., 71,
4727–4744, https://doi.org/10.1016/j.gca.2007.06.061, 2007.
McCarthy, M. D., Lehman, J., and Kudela, R.: Compound-specific amino acid
δ15N patterns in marine algae: Tracer potential for cyanobacterial
vs. eukaryotic organic nitrogen sources in the ocean, Geochim. Cosmochim.
Ac., 103, 104–120, https://doi.org/10.1016/j.gca.2012.10.037 2013.
Miguel, A. G., Cass, G. R., Glovsky, M. M., and Weiss, J.: Allergens in Paved Road Dust and Airborne Particles, Environ. Sci. Technol., 33, 4159–4168, https://doi.org/10.1021/es9904890, 1999.
Papastefanou, C.: Residence time of tropospheric aerosols in association
with radioactive nuclides, Appl. Radiat. Isot., 64, 93–100,
https://doi.org/10.1016/j.apradiso.2005.07.006, 2006.
Philben, M., Billings, S. A., Edwards, K. A., Podrebarac, F. A., van Biesen,
G., and Ziegler, S. E.: Amino acid δ15N indicates lack of N
isotope fractionation during soil organic nitrogen decomposition,
Biogeochemistry, 138, 69–83, https://doi.org/10.1007/s10533-018-0429-y, 2018.
Pogoda i Klimat: Weather and Climate, http://www.weatherandclimate.info/weather.php?id=58606&bday=1&fday=31&amonth=5&ayear=2019, 10 February 2021.
Ren, L., Bai, H., Yu, X., Wu, F., Yue, S., Ren, H., Li, L., Lai, S., Sun,
Y., and Wang, Z.: Molecular composition and seasonal variation of amino
acids in urban aerosols from Beijing, China, Atmos. Res., 203, 28–35,
https://doi.org/10.1016/j.atmosres.2017.11.032, 2018.
Samy, S., Robinson, J., Rumsey, I. C., Walker, J. T., Hays, M. D., Robinson,
J., Rumsey, I. C., and Hays, M. D.: Speciation and trends of organic
nitrogen in southeastern U.S. fine particulate matter (PM2.5), J. Geophys.
Res.-Atmos, 118, 1996–2006, https://doi.org/10.1029/2012JD017868, 2013.
Song, T., Wang, S., Zhang, Y., Song, J., Liu, F., Fu, P., Shiraiwa, M., Xie,
Z., Yue, D., Zhong, L., Zheng, J., and Lai, S.: Proteins and Amino Acids in
Fine Particulate Matter in Rural Guangzhou, Southern China: Seasonal Cycles,
Sources, and Atmospheric Processes, Environ. Sci. Technol., 51, 6773–6781,
https://doi.org/10.1021/acs.est.7b00987, 2017.
Wang, K., Chen, J. F., Jin, H. Y., Li, H. L., and Zhang, W. Y.: Organic
matter degradation in surface sediments of the Changjiang estuary: Evidence
from amino acids, Sci. Total Environ., 637, 1004–1013,
https://doi.org/10.1016/j.scitotenv.2018.04.242, 2018.
Wang, S., Song, T., Shiraiwa, M., Song, J., Ren, H., Ren, L., Wei, L., Sun,
Y., Zhang, Y., Fu, P., and Lai, S.: Occurrence of Aerosol Proteinaceous
Matter in Urban Beijing: An Investigation on Composition, Sources, and
Atmospheric Processes During the “APEC Blue” Period, Environ. Sci.
Technol., 53, 7380–7390, https://doi.org/10.1021/acs.est.9b00726, 2019.
Wedyan, M. A. and Preston, M. R.: The coupling of surface seawater organic
nitrogen and the marine aerosol as inferred from enantiomer-specific amino
acid analysis, Atmos. Environ., 42, 8698–8705,
https://doi.org/10.1016/j.atmosenv.2008.04.038, 2008.
Wei, K., Zou, Z., Zheng, Y., Li, J., Shen, F., Wu, C.-y., Wu, Y., Hu, M.,
and Yao, M.: Ambient bioaerosol particle dynamics observed during haze and
sunny days in Beijing, Sci. Total Environ., 550, 751–759,
https://doi.org/10.1016/j.scitotenv.2016.01.137, 2016.
Wei, M., Xu, C., Xu, X., Zhu, C., Li, J., and Lv, G.: Characteristics of
atmospheric bacterial and fungal communities in PM2.5 following biomass
burning disturbance in a rural area of North China Plain, Sci. Total
Environ., 651, 2727–2739, https://doi.org/10.1016/j.scitotenv.2018.09.399, 2019.
Xu, Y., Wu, D., Xiao, H., and Zhou, J.: Dissolved hydrolyzed amino acids in
precipitation in suburban Guiyang, southwestern China: Seasonal variations
and potential atmospheric processes, Atmos. Environ., 211, 247–255, https://doi.org/10.1016/j.atmosenv.2019.05.011, 2019.
Yamaguchi, Y. T., Chikaraishi, Y., Takano, Y., Ogawa, N. O., Imachi, H.,
Yokoyama, Y., and Ohkouchi, N.: Fractionation of nitrogen isotopes during
amino acid metabolism in heterotrophic and chemolithoautotrophic microbes
across Eukarya, Bacteria, and Archaea: Effects of nitrogen sources and
metabolic pathways, Org. Geochem., 111, 101–112,
https://doi.org/10.1016/j.orggeochem.2017.04.004, 2017.
Yamashita, Y. and Tanoue, E.: Distribution and alteration of amino acids in
bulk DOM along a transect from bay to oceanic waters, Mar. Chem., 82,
145–160, https://doi.org/10.1016/S0304-4203(03)00049-5, 2003.
Yan, G., Kim, G., Kim, J., Jeong, Y.-S., and Kim, Y. I.: Dissolved total
hydrolyzable enantiomeric amino acids in precipitation: Implications on
bacterial contributions to atmospheric organic matter, Geochim. Cosmochim.
Ac., 153, 1–14, https://doi.org/10.1016/j.gca.2015.01.005, 2015.
Yue, S., Ren, H., Fan, S., Sun, Y., Wang, Z., and Fu, P.: Springtime
precipitation effects on the abundance of fluorescent biological aerosol
particles and HULIS in Beijing, J. Sci. Res., 6, 29618,
https://doi.org/10.1038/srep29618, 2016.
Zhang, Q., Anastasio, C., and Jimenez-Cruz, M.: Water-soluble organic
nitrogen in atmospheric fine particles (PM2.5) from northern California, J.
Geophys. Res.-Atmos, 107, AAC 3-1–AAC 3-9, https://doi.org/10.1029/2001JD000870, 2002.
Zhang, Q. and Anastasio, C.: Free and combined amino compounds in atmospheric
fine particles (PM2.5) and fog waters from Northern California, Atmos.
Environ., 37, 2247–2258, https://doi.org/10.1016/S1352-2310(03)00127-4, 2003.
Zhu, R.-G., Xiao, H.-Y., Zhang, Z., and Lai, Y.: Compound-specific δ15N composition of free amino acids in moss as indicators of atmospheric
nitrogen sources, J. Sci. Res., 8, 14347, https://doi.org/10.1038/s41598-018-32531-x,
2018.
Zhu, R.-G., Xiao, H.-Y., Zhu, Y., Wen, Z., Fang, X., and Pan, Y.: Sources
and Transformation Processes of Proteinaceous Matter and Free Amino Acids in
PM2.5, J. Geophys. Res.-Atmos, 125, e2020JD032375, https://doi.org/10.1029/2020jd032375,
2020.
Short summary
Amino acids (AAs), as important organic nitrogen compounds, play key roles in the nitrogen cycles, climate change and public health. The sources and transformation of AAs in two size-segregated aerosol particles were explored. This study presents the first isotopic evidence that the sources of AAs for fine and coarse aerosol particles may be similar. And the potentially significant role of bacterial degradation processes in aerosol protein degradation state was suggested.
Amino acids (AAs), as important organic nitrogen compounds, play key roles in the nitrogen...
Altmetrics
Final-revised paper
Preprint