Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-2125-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-2125-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NOx in Beijing
Lisa K. Whalley
CORRESPONDING AUTHOR
School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK
Eloise J. Slater
School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
Robert Woodward-Massey
School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
now at: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Chunxiang Ye
School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
now at: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
James D. Lee
National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD, UK
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
Freya Squires
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
James R. Hopkins
National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD, UK
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
Rachel E. Dunmore
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
Marvin Shaw
National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD, UK
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
Jacqueline F. Hamilton
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
Alastair C. Lewis
National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD, UK
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
Archit Mehra
Centre for Atmospheric Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
now at: Faculty of Science and Engineering, University of Chester, Chester, CH2 4NU, UK
Stephen D. Worrall
Centre for Atmospheric Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
now at: Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, UK
Asan Bacak
Centre for Atmospheric Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
now at: Turkish Accelerator & Radiation Laboratory, Ankara University Institute of Accelerator Technologies, Atmospheric and Environmental Chemistry Laboratory, Gölbaşı Campus, Ankara, Turkey
Thomas J. Bannan
Centre for Atmospheric Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
Centre for Atmospheric Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
National Centre for Atmospheric Science, University of Manchester, Manchester, M13 9PL, UK
Carl J. Percival
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Bin Ouyang
Department of Chemistry, University of Cambridge, Cambridge, UK
now at: Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
Roderic L. Jones
Department of Chemistry, University of Cambridge, Cambridge, UK
Leigh R. Crilley
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
now at: Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
Louisa J. Kramer
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
William J. Bloss
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
Simone Kotthaus
Department of Meteorology, University of Reading, Reading, UK
Institut Pierre Simon Laplace, École Polytechnique, Palaiseau, France
Sue Grimmond
Department of Meteorology, University of Reading, Reading, UK
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute for Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyang District, Beijing 100029, China
Weiqi Xu
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute for Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyang District, Beijing 100029, China
Siyao Yue
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute for Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyang District, Beijing 100029, China
Lujie Ren
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute for Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyang District, Beijing 100029, China
W. Joe F. Acton
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
C. Nicholas Hewitt
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
Xinming Wang
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Wushan, Tianhe District, Guangzhou, GD 510640, China
Pingqing Fu
Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
Dwayne E. Heard
School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
Viewed
Total article views: 4,232 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 03 Sep 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,922 | 1,284 | 26 | 4,232 | 187 | 23 | 87 |
- HTML: 2,922
- PDF: 1,284
- XML: 26
- Total: 4,232
- Supplement: 187
- BibTeX: 23
- EndNote: 87
Total article views: 3,339 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Feb 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,408 | 910 | 21 | 3,339 | 187 | 16 | 68 |
- HTML: 2,408
- PDF: 910
- XML: 21
- Total: 3,339
- Supplement: 187
- BibTeX: 16
- EndNote: 68
Total article views: 893 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 03 Sep 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
514 | 374 | 5 | 893 | 7 | 19 |
- HTML: 514
- PDF: 374
- XML: 5
- Total: 893
- BibTeX: 7
- EndNote: 19
Viewed (geographical distribution)
Total article views: 4,232 (including HTML, PDF, and XML)
Thereof 4,183 with geography defined
and 49 with unknown origin.
Total article views: 3,339 (including HTML, PDF, and XML)
Thereof 3,287 with geography defined
and 52 with unknown origin.
Total article views: 893 (including HTML, PDF, and XML)
Thereof 896 with geography defined
and -3 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
20 citations as recorded by crossref.
- Plasma‐Modified Coal Fly Ash Zeolites with Enhanced Catalytic Efficiency toward the Total Oxidation of Volatile Organic Compounds as Low‐Cost Substitutes for Platinum Group Metals Catalysts S. Boycheva et al. 10.1002/pssa.202100632
- PM2.5-bound silicon-containing secondary organic aerosols (Si-SOA) in Beijing ambient air J. Xu et al. 10.1016/j.chemosphere.2021.132377
- Increased ozone pollution alongside reduced nitrogen dioxide concentrations during Vienna’s first COVID-19 lockdown: Significance for air quality management M. Brancher 10.1016/j.envpol.2021.117153
- Tropospheric ozone changes and ozone sensitivity from the present day to the future under shared socio-economic pathways Z. Liu et al. 10.5194/acp-22-1209-2022
- The impacts of VOCs on PM2.5 increasing via their chemical losses estimates: A case study in a typical industrial city of China W. Wei et al. 10.1016/j.atmosenv.2022.118978
- Production of HONO from NO<sub>2</sub> uptake on illuminated TiO<sub>2</sub> aerosol particles and following the illumination of mixed TiO<sub>2</sub>∕ammonium nitrate particles J. Dyson et al. 10.5194/acp-21-5755-2021
- Investigation of OH-reactivity budget in the isoprene, α-pinene and m-xylene oxidation with OH under high NOx conditions Y. Sakamoto et al. 10.1016/j.atmosenv.2021.118916
- Atmospheric conditions and composition that influence PM<sub>2.5</sub> oxidative potential in Beijing, China S. Campbell et al. 10.5194/acp-21-5549-2021
- Atmospheric measurements at Mt. Tai – Part II: HONO budget and radical (RO<sub><i>x</i></sub> + NO<sub>3</sub>) chemistry in the lower boundary layer C. Xue et al. 10.5194/acp-22-1035-2022
- A quantitative understanding of total OH reactivity and ozone production in a coastal industrial area during the Yokohama air quality study (AQUAS) campaign of summer 2019 J. Li et al. 10.1016/j.atmosenv.2021.118754
- Atmospheric oxidizing capacity in autumn Beijing: Analysis of the O3 and PM2.5 episodes based on observation-based model C. Jia et al. 10.1016/j.jes.2021.11.020
- Experimental and theoretical study on the impact of a nitrate group on the chemistry of alkoxy radicals A. Novelli et al. 10.1039/D0CP05555G
- Process-based and observation-constrained SOA simulations in China: the role of semivolatile and intermediate-volatility organic compounds and OH levels R. Miao et al. 10.5194/acp-21-16183-2021
- Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry C. Reeves et al. 10.5194/acp-21-6315-2021
- In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India B. Nelson et al. 10.5194/acp-21-13609-2021
- A review on methodology in O3-NOx-VOC sensitivity study C. Liu & K. Shi 10.1016/j.envpol.2021.118249
- Direct evidence of local photochemical production driven ozone episode in Beijing: A case study Z. Tan et al. 10.1016/j.scitotenv.2021.148868
- Elevated levels of OH observed in haze events during wintertime in central Beijing E. Slater et al. 10.5194/acp-20-14847-2020
- Surface–atmosphere fluxes of volatile organic compounds in Beijing W. Acton et al. 10.5194/acp-20-15101-2020
- Low-NO atmospheric oxidation pathways in a polluted megacity M. Newland et al. 10.5194/acp-21-1613-2021
17 citations as recorded by crossref.
- Plasma‐Modified Coal Fly Ash Zeolites with Enhanced Catalytic Efficiency toward the Total Oxidation of Volatile Organic Compounds as Low‐Cost Substitutes for Platinum Group Metals Catalysts S. Boycheva et al. 10.1002/pssa.202100632
- PM2.5-bound silicon-containing secondary organic aerosols (Si-SOA) in Beijing ambient air J. Xu et al. 10.1016/j.chemosphere.2021.132377
- Increased ozone pollution alongside reduced nitrogen dioxide concentrations during Vienna’s first COVID-19 lockdown: Significance for air quality management M. Brancher 10.1016/j.envpol.2021.117153
- Tropospheric ozone changes and ozone sensitivity from the present day to the future under shared socio-economic pathways Z. Liu et al. 10.5194/acp-22-1209-2022
- The impacts of VOCs on PM2.5 increasing via their chemical losses estimates: A case study in a typical industrial city of China W. Wei et al. 10.1016/j.atmosenv.2022.118978
- Production of HONO from NO<sub>2</sub> uptake on illuminated TiO<sub>2</sub> aerosol particles and following the illumination of mixed TiO<sub>2</sub>∕ammonium nitrate particles J. Dyson et al. 10.5194/acp-21-5755-2021
- Investigation of OH-reactivity budget in the isoprene, α-pinene and m-xylene oxidation with OH under high NOx conditions Y. Sakamoto et al. 10.1016/j.atmosenv.2021.118916
- Atmospheric conditions and composition that influence PM<sub>2.5</sub> oxidative potential in Beijing, China S. Campbell et al. 10.5194/acp-21-5549-2021
- Atmospheric measurements at Mt. Tai – Part II: HONO budget and radical (RO<sub><i>x</i></sub> + NO<sub>3</sub>) chemistry in the lower boundary layer C. Xue et al. 10.5194/acp-22-1035-2022
- A quantitative understanding of total OH reactivity and ozone production in a coastal industrial area during the Yokohama air quality study (AQUAS) campaign of summer 2019 J. Li et al. 10.1016/j.atmosenv.2021.118754
- Atmospheric oxidizing capacity in autumn Beijing: Analysis of the O3 and PM2.5 episodes based on observation-based model C. Jia et al. 10.1016/j.jes.2021.11.020
- Experimental and theoretical study on the impact of a nitrate group on the chemistry of alkoxy radicals A. Novelli et al. 10.1039/D0CP05555G
- Process-based and observation-constrained SOA simulations in China: the role of semivolatile and intermediate-volatility organic compounds and OH levels R. Miao et al. 10.5194/acp-21-16183-2021
- Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry C. Reeves et al. 10.5194/acp-21-6315-2021
- In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India B. Nelson et al. 10.5194/acp-21-13609-2021
- A review on methodology in O3-NOx-VOC sensitivity study C. Liu & K. Shi 10.1016/j.envpol.2021.118249
- Direct evidence of local photochemical production driven ozone episode in Beijing: A case study Z. Tan et al. 10.1016/j.scitotenv.2021.148868
3 citations as recorded by crossref.
- Elevated levels of OH observed in haze events during wintertime in central Beijing E. Slater et al. 10.5194/acp-20-14847-2020
- Surface–atmosphere fluxes of volatile organic compounds in Beijing W. Acton et al. 10.5194/acp-20-15101-2020
- Low-NO atmospheric oxidation pathways in a polluted megacity M. Newland et al. 10.5194/acp-21-1613-2021
Latest update: 28 Mar 2023
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
To understand how emission controls will impact ozone, an understanding of the sources and sinks...
Altmetrics
Final-revised paper
Preprint