Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-2083-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-2083-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of vertical air motion among reanalyses and qualitative comparison with very-high-frequency radar measurements over two tropical stations
Kizhathur Narasimhan Uma
CORRESPONDING AUTHOR
Space Physics Laboratory, Vikram Sarabhai Space Centre, ISRO, Trivandrum-695022, India
Siddarth Shankar Das
Space Physics Laboratory, Vikram Sarabhai Space Centre, ISRO, Trivandrum-695022, India
Madineni Venkat Ratnam
National Atmospheric Research Laboratory, Department of Space, Gadanki-517112, India
Kuniyil Viswanathan Suneeth
Space Physics Laboratory, Vikram Sarabhai Space Centre, ISRO, Trivandrum-695022, India
India Meteorological Department, Ministry of Earth Sciences, New Delhi-110003, India
Related authors
No articles found.
Vadassery Neelamana Santhosh, Bomidi Lakshmi Madhavan, Sivan Thankamani Akhil Raj, Madineni Venkat Ratnam, Jean-Paul Vernier, and Frank Gunther Wienhold
Atmos. Chem. Phys., 25, 8255–8270, https://doi.org/10.5194/acp-25-8255-2025, https://doi.org/10.5194/acp-25-8255-2025, 2025
Short summary
Short summary
Our study examines a lesser-known atmospheric feature, the Asian Tropopause Aerosol Layer, located high above the Earth. We investigated how different aerosols, such as sulfates, nitrates, and pollutants, influence the exchange of heat between the atmosphere and its surroundings. The results show that these particles can alter temperature patterns, especially during the Asian summer monsoon. This research improves our understanding of how human activities may affect regional climate.
Sougat Kumar Sarangi, Chandan Sarangi, Niravkumar Patel, Bomidi Lakshmi Madhavan, Shantikumar Singh Ningombam, Belur Ravindra, and Madineni Venkat Ratnam
EGUsphere, https://doi.org/10.5194/egusphere-2024-3364, https://doi.org/10.5194/egusphere-2024-3364, 2025
Short summary
Short summary
This study introduces a new approach to measure cloud cover from image data taken by ground based sky observations. Our method used diverse sky images taken from various locations across the globe to train our machine learning model. We achieved a very high accuracy in detecting cloud cover, even in polluted areas. Our model surpasses traditional methods by running efficiently with minimal computational needs.
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
Atmos. Chem. Phys., 24, 14209–14238, https://doi.org/10.5194/acp-24-14209-2024, https://doi.org/10.5194/acp-24-14209-2024, 2024
Short summary
Short summary
This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 µm were found in this optically thin cirrus cloud layer. Combined analysis of back trajectories, satellite, and model data revealed that the formation of this layer was influenced by waves and stratospheric hydration induced by typhoon Hato.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Renju Nandan, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech., 15, 4709–4734, https://doi.org/10.5194/amt-15-4709-2022, https://doi.org/10.5194/amt-15-4709-2022, 2022
Short summary
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam
Atmos. Chem. Phys., 21, 11161–11177, https://doi.org/10.5194/acp-21-11161-2021, https://doi.org/10.5194/acp-21-11161-2021, 2021
Short summary
Short summary
In this study, urbanization-induced surface warming has been found to trigger prominent changes in upper-troposphere–lower-stratosphere regions leading to stronger and more frequent lightning extremes over India. Consequently, the implementation of this hypothesis in global climate models reveals that lightning frequency and intensity values across India will rise by ~10–25 % and 15–50 %, respectively, by 2100 at the current urbanization rate, which should be alarming for present policymakers.
Saginela Ravindra Babu, Madineni Venkat Ratnam, Ghouse Basha, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 5533–5547, https://doi.org/10.5194/acp-21-5533-2021, https://doi.org/10.5194/acp-21-5533-2021, 2021
Short summary
Short summary
The present study explores the detailed structure, dynamics, and trace gas variability in the Asian summer monsoon anticyclone (ASMA) in the extreme El Niño of 2015/16. The results find the structure of the ASMA shows strong spatial variability between July and August. A West Pacific mode of the anticyclone is noticed in August. A significant lowering of tropospheric tracers and strong increase in stratospheric tracers are found. The tropopause temperatures also exhibit a warming in the ASMA.
Cited articles
Anandan, V. K., Ramachandra Reddy, G., and Rao, P. B.: Spectral analysis
of atmospheric radar signal using higher order spectral estimation technique,
IEEE T. Geosci. Remote, 39, 1890–1895,
https://doi.org/10.1109/36.951079, 2001. a
Arakawa, A. and Schubert, W. H.: Interaction of a Cumulus Cloud Ensemble with
the Large-Scale Environment, Part I, J. Atmos. Sci.,
31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2, 1974. a
Back, L. E. and Bretherton, C. S.: Geographic variability in the export of
moist static energy and vertical motion profiles in the tropical Pacific,
Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672, 2006. a
Bechtold, P., Chaboureau, J.-P., Beljaars, A., Betts, A. K., Köhler, M.,
Miller, M., and Redelsperger, J.-L.: The simulation of the diurnal cycle of
convective precipitation over land in a global model, Q. J.
Roy. Meteor. Soc., 130, 3119–3137, https://doi.org/10.1256/qj.03.103,
2004. a
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell,
M. J., Vitart, F., and Balsamo, G.: Advances in simulating atmospheric
variability with the ECMWF model: From synoptic to decadal time-scales,
Q. J. Roy. Meteor. Soc., 134, 1337–1351,
https://doi.org/10.1002/qj.289, 2008. a
Briegleb, B. P.: Longwave band model for thermal radiation in climate studies,
J. Geophys. Res.-Atmos., 97, 11475–11485,
https://doi.org/10.1029/92JD00806, 1992. a
Campana, K. A., Hou, Y.-T., Mitchell, K. E., Yang, S.-K., and Cullather, R.: Improved diagnostic
cloud parameterization in NMC's global model, 10th Conference on
Numerical Weather Prediction, 18–22 July 1994, Portland, OR, USA, 324–325,
1994. a
Chou, M. and Suarez, M.: A Solar Radiation Parameterization (CLIRAD-SW)
Developed at Goddard Climate and Radiation Branch for Atmospheric Studies,
NASA Technical Memorandum NASA/TM-1999-104606, 1999. a
Chou, M.-D.: A Solar Radiation Model for Use in Climate Studies, J.
Atmos. Sci., 49, 762–772,
https://doi.org/10.1175/1520-0469(1992)049<0762:ASRMFU>2.0.CO;2, 1992. a
Chou, M.-D. and Lee, K.-T.: Parameterizations for the Absorption of Solar
Radiation by Water Vapor and Ozone, J. Atmos. Sci., 53,
1203–1208, https://doi.org/10.1175/1520-0469(1996)053<1203:PFTAOS>2.0.CO;2, 1996. a
Chou, M.-D., Lee, K.-T., and Yang, P.: Parameterization of shortwave cloud
optical properties for a mixture of ice particle habits for use in
atmospheric models, J. Geophys. Res.-Atmos., 107, 4600,
https://doi.org/10.1029/2002JD002061, 2002. a, b
Damle, S. H., Chande, J. V., Heldar, S., C. T., and Ray, K. P.: Calibration of
ST radar using Virgo-A Radio source, Proceedings of the V international
workshop on technical and scientific aspects of MST radar, Aberywth, UK,
6–9 August,
1991. a
Das, S. S., Uma, K. N., Bineesha, V. N., Suneeth, K. V., and Ramkumar, G.:
Four-decadal climatological intercomparison of rocketsonde and radiosonde
with different reanalysis data: results from Thumba Equatorial Station,
Q. J. Roy. Meteor. Soc., 142, 91–101,
https://doi.org/10.1002/qj.2632, 2016. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b, c
European Centre for Medium-Range Weather Forecasts: updated
monthly, ERA-Interim Project. Research Data Archive at the National
Center for Atmospheric Research, Computational and Information Systems
Laboratory, available at: https://doi.org/10.5065/D6CR5RD9 (last access: 29 July 2020), 2009.
European Centre for Medium-Range Weather Forecasts: updated
monthly, ERA5 Reanalysis, Research Data Archive at the National Center
for Atmospheric Research, Computational and Information Systems
Laboratory, available at: https://doi.org/10.5065/D6X34W69, (last access: 30 July 2020), 2017.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007. a
Fouquart, Y., Buriez, J. C., Herman, M., and Kandel, R. S.: The influence of
clouds on radiation: A climate-modeling perspective, Rev. Geophys.,
28, 145–166, https://doi.org/10.1029/RG028i002p00145, 1990. a
Fujiwara, M. and Jackson, D.: SPARC Reanalysis Intercomparison Project (SRIP)
planning meeting, 29 April–1 May 2013, Exeter, UK, SPARC Newsletter, 41,
52–55, 2013. a
Fujiwara, M., Polavarapu, S., and Jackson, D.: A proposal of the SPARC
reanalysis/analysis intercomparison project, SPARC Newsletter, 38, 14–17,
2013. a
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017. a, b
Fukao, S., Hashiguchi, H., Yamamoto, M., Tsuda, T., Nakamura, T., Yamamoto,
M. K., Sato, T., Hagio, M., and Yabugaki, Y.: Equatorial Atmosphere Radar
(EAR): System description and first results, Radio Sci., 38, 1053,
https://doi.org/10.1029/2002RS002767, 2003. a, b
Gage, K. S., McAfee, J. R., Carter, D. A., Ecklund, W. L., Riddle, A. C., Reid,
G. C., and Balsley, B. B.: Long-Term Mean Vertical Motion over the Tropical
Pacific: Wind-Profiling Doppler Radar Measurements, Science, 254, 1771–1773,
https://doi.org/10.1126/science.254.5039.1771, 1991. a
Gage, K. S., McAsfee, J. R., and Reid, G. C.: Diurnal variation in vertical
motion over the central equatorial Pacific from VHF wind-profiling Doppler
radar observations at Christmas Island (2° N, 157° W), Geophys. Res.
Lett., 19, 1827–1830, https://doi.org/10.1029/92GL02105, 1992. a, b
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griessbach, S., Heng, Y., Konopka, P., Müller, R., Vogel, B., and Wright, J. S.: From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations, Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, 2019. a
Huaman, M. M. and Balsley, B. B.: Long-Term Average Vertical Motions Observed
by VHF Wind Profilers: The Effect of Slight Antenna-Pointing Inaccuracies,
J. Atmos. Ocean. Tech., 13, 560–569,
https://doi.org/10.1175/1520-0426(1996)013<0560:LTAVMO>2.0.CO;2, 1996. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Jagannadha Rao, V. V. M., Narayana Rao, D., Venkat Ratnam, M., Mohan, K., and
Vijaya Bhaskar Rao, S.: Mean Vertical Velocities Measured by Indian MST
Radar and Comparison with Indirectly Computed Values, J. Appl.
Meteorol., 42, 541–552,
https://doi.org/10.1175/1520-0450(2003)042<0541:MVVMBI>2.0.CO;2, 2003. a
Japan Meteorological Agency/Japan: updated monthly, JRA-55:
Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data. Research
Data Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory, available at: https://doi.org/10.5065/D6HH6H41, (last access: 18 June 2020), 2013.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino,
M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B.
Am. Meteorol. Soc., 83, 1631–1644,
https://doi.org/10.1175/BAMS-83-11-1631, 2002. a, b
Kawai, H. and Inoue, T.: A Simple Parameterization Scheme for Subtropical
Marine Stratocumulus, SOLA, 2, 17–20, https://doi.org/10.2151/sola.2006-005, 2006. a
Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M., and Anstey, J. A.: Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses, Atmos. Chem. Phys., 16, 6681–6699, https://doi.org/10.5194/acp-16-6681-2016, 2016. a
Kennedy, A. D., Dong, X., Xi, B., Xie, S., Zhang, Y., and Chen, J.: A
Comparison of MERRA and NARR Reanalyses with the DOE ARM SGP Data, J.
Climate, 24, 4541–4557, https://doi.org/10.1175/2011JCLI3978.1, 2011. a
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics,
J. Meteorol. Soc. Jpn., 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015. a, b
Koscielny, A. J., Doviak, R. J., and Zrnic, D. S.: An Evaluation of the
Accuracy of Some Radar Wind Profiling Techniques, J. Atmos. Ocean. Technol., 1, 309–320,
https://doi.org/10.1175/1520-0426(1984)001<0309:AEOTAO>2.0.CO;2, 1984. a
Liou, Y.-C. and Chang, Y.-J.: A Variational Multiple-Doppler Radar
Three-Dimensional Wind Synthesis Method and Its Impacts on Thermodynamic
Retrieval, Mon. Weather Rev., 137, 3992, https://doi.org/10.1175/2009MWR2980.1,
2009. a
Matejka, T.: Estimating the Most Steady Frame of Reference from Doppler Radar
Data, J. Atmos. Ocean. Technol., 19, 1035–1048,
https://doi.org/10.1175/1520-0426(2002)019<1035:ETMSFO>2.0.CO;2, 2002. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997. a, b
Modern-Era Retrospective Analysis for Research and Applications: Version
2 (MERRA-2)), Research Data Archive at the NASA Goddard Earth
Sciences data and information service centre (GES-DISC), available at: http://dx.doi.org/10.5067/QBZ6MG944HW0, last access: 5 July 2019.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015. a
Moorthi, S. and Suarez, M. J.: Relaxed Arakawa-Schubert. A Parameterization of
Moist Convection for General Circulation Models, Mon. Weather Rev.,
120, 978–1002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2, 1992. a
Morcrette, J.-J.: Radiation and cloud radiative properties in the European
Centre for Medium Range Weather Forecasts forecasting system, J.
Geophys. Res.-Atmos., 96, 9121–9132, https://doi.org/10.1029/89JD01597,
1991. a
Muschinski, A.: Possible Effect of Kelvin-Helmholtz Instability on VHF Radar
Observations of the Mean Vertical Wind, J. Appl. Meteorol., 35,
2210–2217, https://doi.org/10.1175/1520-0450(1996)035<2210:PEOKHI>2.0.CO;2, 1996. a
Nastrom, G. D. and VanZandt, T. E.: Mean Vertical Motions Seen by Radar Wind
Profilers, J. Appl. Meteorol., 33, 984–995,
https://doi.org/10.1175/1520-0450(1994)033<0984:MVMSBR>2.0.CO;2, 1994. a
National Centers for Environmental Prediction/National Weather
Service/NOAA/U.S. Department of Commerce: NCEP/DOE Reanalysis 2
(R2), Research Data Archive at the National Center for Atmospheric
Research, Computational and Information Systems Laboratory, available at: https://doi.org/10.5065/KVQZ-YJ93, (last access: 7 January 2019), 2000.
Peterson, V. L. and Balsley, B. B.: Clear air Doppler radar measurements of the
vertical component of wind velocity in the troposphere and stratosphere,
Geophys. Res. Lett., 6, 933–936, https://doi.org/10.1029/GL006i012p00933,
1979. a, b
Rao, P. B., Jain, A. R., Kishore, P., Balamuralidhar, P., Damle, S. H., and
Viswanathan, G.: Indian MST radar 1. System description and sample vector
wind measurements in ST mode, Radio Sci., 30, 1125–1138,
https://doi.org/10.1029/95RS00787, 1995. a, b
Rao, T. N., Uma, K. N., Narayana Rao, D., and Fukao, S.: Understanding the
transportation process of tropospheric air entering the stratosphere from
direct vertical air motion measurements over Gadanki and Kototabang,
Geophys. Res. Lett., 35, L15805, https://doi.org/10.1029/2008GL034220, 2008. a, b, c, d, e
Rao, T. N., Uma, K. N., Satyanarayana, T. M., and Rao, D. N.: Differences in
Draft Core Statistics from the Wet to Dry Spell over Gadanki, India (13.5°N,
79.2°E), Mon. Weather Rev., 137, 4293–4306,
https://doi.org/10.1175/2009MWR3057.1, 2009. a
Röttger, J.: Reflection and scattering of VHF radar signals from atmospheric
refractivity structures, Radio Sci., 15, 259–276,
https://doi.org/10.1029/RS015i002p00259, 1980. a
Schumann, U.: The Horizontal Spectrum of Vertical Velocities near the
Tropopause from Global to Gravity Wave Scales, J. Atmos. Sci., 76, 3847–3862, https://doi.org/10.1175/JAS-D-19-0160.1, 2019. a
Stepanyuk, O., Räisänen, J., Sinclair, V. A., and Järvinen, H.: Factors
affecting atmospheric vertical motions as analyzed with a generalized omega
equation and the OpenIFS model, Tellus A, 69, 1271563, https://doi.org/10.1080/16000870.2016.1271563, 2017. a
Tanaka, H. L. and Yatagai, A.: Comparative Study of Vertical Motions in the
Global Atmosphere Evaluated by Various Kinematic Schemes, J.
Meteorol. Soc. Jpn., 78, 289–298,
https://doi.org/10.2151/jmsj1965.78.3_289, 2000. a, b
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in
Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a, b
Uma, K. N. and Rao, T. N.: Characteristics of Vertical Velocity Cores in
Different Convective Systems Observed over Gadanki, India, Mon. Weather
Rev., 137, 954–975, https://doi.org/10.1175/2008MWR2677.1, 2009a. a, b
Uma, K. N. and Rao, T. N.: Diurnal variation in vertical air motion over a
tropical station, Gadanki (13.5∘ N, 79.2∘ E), and its effect on the
estimation of mean vertical air motion, J. Geophys. Res.-Atmos., 114, D20106, https://doi.org/10.1029/2009JD012560, 2009b. a, b, c
Uma, K. N., Kumar, K. K., Shankar Das, S., Rao, T. N., and Satyanarayana,
T. M.: On the Vertical Distribution of Mean Vertical Velocities in the
Convective Regions during the Wet and Dry Spells of the Monsoon over
Gadanki, Mon. Weather Rev., 140, 398–410,
https://doi.org/10.1175/MWR-D-11-00044.1, 2012. a
Viswanathan, G., Kishore, P., Rao, P. B., Jain, A. R., Aravindhan, R.,
Balamuralidhar, P., and Damle, S. H.: Preliminary results using ST mode of
the Indian MST radar: Measurment of vertical velocity, Indian J.
Radio Space, 22, 97–102, 1993. a
Wang, J., Bian, J., Brown, W. O., Cole, H., Grubišić, V., and Young, K.:
Vertical Air Motion from T-REX Radiosonde and Dropsonde Data, J.
Atmos. Ocean. Technol., 26, 928–942,
https://doi.org/10.1175/2008JTECHA1240.1, 2009. a
Yamamoto, M. K., Fujiwara, M., Horinouchi, T., Hashiguchi, H., and Fukao, S.:
Kelvin-Helmholtz instability around the tropical tropopause observed with the
Equatorial Atmosphere Radar, Geophys. Res. Lett., 30, 1476,
https://doi.org/10.1029/2002GL016685, 2003. a
Yamamoto, M. K., Nishi, N., Horinouchi, T., Niwano, M., and Fukao, S.: Vertical
wind observation in the tropical upper troposphere by VHF wind profiler: A
case study, Radio Sci., 42, RS3005, https://doi.org/10.1029/2006RS003538, 2007.
a
Zhang, J., Chen, H., Zhu, Y., Shi, H., Zheng, Y., Xia, X., Teng, Y., Wang, F.,
Han, X., Li, J., and Xuan, Y.: A Novel Method for Estimating the Vertical
Velocity of Air with a Descending Radiosonde System, Remote Sens.-Basel, 11, 1538, https://doi.org/10.3390/rs11131538, 2019. a
Short summary
Reanalysis data of vertical wind (w) are widely used by the atmospheric community to determine various calculations of atmospheric circulations, diabatic heating, convection, etc. There are no studies that assess the available reanalysis data with respect to observations. The present study assesses for the first time all the reanalysis w by comparing it with 20 years of radar data from Gadanki and Kototabang and shows that downdrafts and peaks in the updrafts are not produced in the reanalyses.
Reanalysis data of vertical wind (w) are widely used by the atmospheric community to determine...
Altmetrics
Final-revised paper
Preprint