Articles | Volume 21, issue 23
Atmos. Chem. Phys., 21, 17687–17714, 2021
https://doi.org/10.5194/acp-21-17687-2021
Atmos. Chem. Phys., 21, 17687–17714, 2021
https://doi.org/10.5194/acp-21-17687-2021

Research article 03 Dec 2021

Research article | 03 Dec 2021

Molecular-scale description of interfacial mass transfer in phase-separated aqueous secondary organic aerosol

Mária Lbadaoui-Darvas et al.

Video supplement

Sample Steered MD trajectory M. Lbadaoui-Darvas, S. Takahama and A. Nenes https://doi.org/10.5281/zenodo.4902870

Download
Short summary
Aerosol–cloud interactions constitute the most uncertain contribution to climate change. The uptake kinetics of water by aerosol is a central process of cloud droplet formation, yet its molecular-scale mechanism is unknown. We use molecular simulations to study this process for phase-separated organic particles. Our results explain the increased cloud condensation activity of such particles and can be generalized over various compositions, thus possibly serving as a basis for future models.
Altmetrics
Final-revised paper
Preprint