Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-14493-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-14493-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Clustering diurnal cycles of day-to-day temperature change to understand their impacts on air quality forecasting in mountain-basin areas
Debing Kong
Chongqing Jinfo Mountain Karst Ecosystem National Observation and
Research Station, School of Geographical Sciences, Southwest University,
Chongqing, 400715, China
Chongqing Engineering Research Center for Remote Sensing Big Data
Application, School of Geographical Sciences, Southwest University,
Chongqing, 400715, China
Guicai Ning
CORRESPONDING AUTHOR
The Gansu Key Laboratory of Arid Climate Change and Reducing Disaster,
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Shigong Wang
The Gansu Key Laboratory of Arid Climate Change and Reducing Disaster,
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Sichuan Key Laboratory for Plateau Atmosphere and Environment, School
of Atmospheric Sciences, Chengdu University of Information Technology,
Chengdu 610225, China
Jing Cong
Tianjin Municipal Meteorological Observatory, Tianjin 300074, China
Ming Luo
Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
School of Geography and Planning, Guangdong Key Laboratory for
Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou 510275,
China
Chongqing Jinfo Mountain Karst Ecosystem National Observation and
Research Station, School of Geographical Sciences, Southwest University,
Chongqing, 400715, China
Chongqing Engineering Research Center for Remote Sensing Big Data
Application, School of Geographical Sciences, Southwest University,
Chongqing, 400715, China
Mingguo Ma
Chongqing Jinfo Mountain Karst Ecosystem National Observation and
Research Station, School of Geographical Sciences, Southwest University,
Chongqing, 400715, China
Chongqing Engineering Research Center for Remote Sensing Big Data
Application, School of Geographical Sciences, Southwest University,
Chongqing, 400715, China
Related authors
Zengjing Song, Yijian Zeng, Yunfei Wang, Enting Tang, Danyang Yu, Fakhereh Alidoost, Mingguo Ma, Xujun Han, Xuguang Tang, Zhongjing Zhu, Yao Xiao, Debing Kong, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-2940, https://doi.org/10.5194/egusphere-2024-2940, 2024
Preprint archived
Short summary
Short summary
The exchange of water and carbon between the plant and the atmosphere is affected under water stress conditions. In this study, a leaf-water-potential-based water stress factor is considered in the STEMMUS-SCOPE (hereafter STEMMUS-SCOPE-PHS), to replace the conventional soil-moisture-based water stress factor. The results show that leaf water potential reflects the plant water stress well, and the STEMMUS-SCOPE-PHS outperforms STEMMUS-SCOPE in the dynamics of the water, energy and carbon fluxes.
Yujia Zhang, Xiaodong Zhang, and Xiang Ni
EGUsphere, https://doi.org/10.5194/egusphere-2025-2199, https://doi.org/10.5194/egusphere-2025-2199, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study explores the microphysical properties of global precipitation systems (PS) which are objectively classified into eight types. Results show that these PSs exhibit significant discrepancies in climatic features, such as the temporal-spatial distributions, microphysical processes etc. Typically, continental PSs has larger particle diameter and lower concentration than oceanic PSs. These findings improve our understanding of global diversity in precipitation microphysical features.
Zengjing Song, Yijian Zeng, Yunfei Wang, Enting Tang, Danyang Yu, Fakhereh Alidoost, Mingguo Ma, Xujun Han, Xuguang Tang, Zhongjing Zhu, Yao Xiao, Debing Kong, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-2940, https://doi.org/10.5194/egusphere-2024-2940, 2024
Preprint archived
Short summary
Short summary
The exchange of water and carbon between the plant and the atmosphere is affected under water stress conditions. In this study, a leaf-water-potential-based water stress factor is considered in the STEMMUS-SCOPE (hereafter STEMMUS-SCOPE-PHS), to replace the conventional soil-moisture-based water stress factor. The results show that leaf water potential reflects the plant water stress well, and the STEMMUS-SCOPE-PHS outperforms STEMMUS-SCOPE in the dynamics of the water, energy and carbon fluxes.
Hui Zhang, Ming Luo, Yongquan Zhao, Lijie Lin, Erjia Ge, Yuanjian Yang, Guicai Ning, Jing Cong, Zhaoliang Zeng, Ke Gui, Jing Li, Ting On Chan, Xiang Li, Sijia Wu, Peng Wang, and Xiaoyu Wang
Earth Syst. Sci. Data, 15, 359–381, https://doi.org/10.5194/essd-15-359-2023, https://doi.org/10.5194/essd-15-359-2023, 2023
Short summary
Short summary
We generate the first monthly high-resolution (1 km) human thermal index collection (HiTIC-Monthly) in China over 2003–2020, in which 12 human-perceived temperature indices are generated by LightGBM. The HiTIC-Monthly dataset has a high accuracy (R2 = 0.996, RMSE = 0.693 °C, MAE = 0.512 °C) and describes explicit spatial variations for fine-scale studies. It is freely available at https://zenodo.org/record/6895533 and https://data.tpdc.ac.cn/disallow/036e67b7-7a3a-4229-956f-40b8cd11871d.
Ji Li, Daoxian Yuan, Fuxi Zhang, Jiao Liu, and Mingguo Ma
Geosci. Model Dev., 15, 6581–6600, https://doi.org/10.5194/gmd-15-6581-2022, https://doi.org/10.5194/gmd-15-6581-2022, 2022
Short summary
Short summary
A new karst hydrological model (the QMG model) is developed to simulate and predict the floods in karst trough valley basins. Unlike the complex structure and parameters of current karst groundwater models, this model has a simple double-layered structure with few parameters and decreases the demand for modeling data in karst areas. The flood simulation results based on the QMG model of the Qingmuguan karst trough valley basin are satisfactory, indicating the suitability of the model simulation.
Cited articles
Bardossy, A., Duckstein, L., and Bogardi, I.: Fuzzy rule-based
classification of atmospheric circulation patterns, Int. J. Climatol., 15,
1087–1097, https://doi.org/10.1002/joc.3370151003, 1995.
Bei, N., Xiao, B., Meng, N., and Feng, T.: Critical role of meteorological
conditions in a persistent haze episode in the Guanzhong basin, China, Sci.
Total Environ., 550, 273–284, https://doi.org/10.1016/j.scitotenv.2015.12.159, 2016.
Beljaars, A.: Chapter 3: Turbulent transport and interactions with the
surface, Part IV: physical processes, IFS documentation, operational
implementation 12 September 2006 Cy31r1 31, ECMWF, Shinfield Park, Reading,
RG2 9AX, England, 2006.
Bernier, C., Wang, Y., Estes, M., Lei, R., Jia, B., Wang, S.-C., and Sun,
J.: Clustering surface ozone diurnal cycles to understand the impact of
circulation patterns in Houston, TX, J. Geophys. Res.-Atmos., 124,
13457–13474, https://doi.org/10.1029/2019JD031725, 2019.
Borse, S. K.: A Review: predicting air quality using different technique,
Acta technica corviniensis-bulletin of engineering, Acta Technica Corviniensis-Bulletin of Engineering, 13, 153–157, 2020.
Byun, D. and Ching, J.: Science algorithms of the EPA models-3 community
multiscale air quality model (CMAQ) modeling system, Rep. EPA/600/R-99, U.S.
Environmental Protection Agency, Research Triangle Park, NC, 22 pp., 1999.
Caliński, T. and Harabasz, J.: A dendrite method for cluster analysis,
Commun. Stat., 3, 1–27, https://doi.org/10.1080/03610927408827101, 1974.
Cavazos, T.: Using self-organizing maps to investigate extreme climate
events: an application to wintertime precipitation in the Balkans, J. Climate,
13, 1718–1732, https://doi.org/10.1175/1520-0442(2000)013<1718:USOMTI> 2.0.CO;2, 2000.
Chelani, A. B. and Devotta, S.: Air quality forecasting using a hybrid
autoregressive and nonlinear model, Atmos. Environ., 40, 1774–1780, https://doi.org/10.1016/j.atmosenv.2005.11.019, 2006.
Chen, Y. and Xie, S.: Temporal and spatial visibility trends in the Sichuan
Basin, China, 1973 to 2010, Atmos. Res., 112, 25–34, https://doi.org/10.1016/j.atmosres.2012.04.009, 2012.
Chikumbo, O. and Granville, V.: Optimal clustering and cluster identity in
understanding high-dimensional data spaces with tightly distributed points,
Mach. Learn. Knowl. Extr., 1, 715–744, https://doi.org/10.3390/make1020042, 2019.
Darby, L. S.: Cluster analysis of surface winds in Houston, Texas, and the
impact of wind patterns on ozone, J. Appl. Meteorol. Climatol., 44,
1788–1806, https://doi.org/10.1175/JAM2320.1, 2005.
Deng, T., Wu, D., Deng, X., Tan, H., Li, F., and Liao, B.: A vertical
sounding of severe haze process in Guangzhou area, Sci. China Earth Sci.,
57, 2650–2656, https://doi.org/10.1007/s11430-014-4928-y, 2014.
Ding, A., Wang, T., and Fu, C.: Transport characteristics and origins of
carbon monoxide and ozone in Hong Kong, South China, J. Geophys. Res.-Atmos., 118, 9475–9488, https://doi.org/10.1002/jgrd.50714, 2013.
Dong, Y., Li, J., Guo, J., Jiang, Z., Chu, Y., Chang, L., Yang, Y., and
Liao, H.: The impact of synoptic patterns on summertime ozone pollution in
the North China Plain, Sci. Total Environ., 735, 139559, https://doi.org/10.1016/j.scitotenv.2020.139559, 2020.
Feng, X., Liu, C., Fan, G., Liu, X., and Feng, C.: Climatology and
structures of southwest vortices in the NCEP climate forecast system
reanalysis, J. Climate, 29, 7675–7701, https://doi.org/10.1175/JCLI-D-15-0813.1, 2016.
Feng, X., Wei, S., and Wang, S.: Temperature inversions in the atmospheric
boundary layer and lower troposphere over the Sichuan Basin, China:
climatology and impacts on air pollution, Sci. Total Environ., 726, 138579,
https://doi.org/10.1016/j.scitotenv.2020.138579, 2020.
Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T.,
and Streets, D. G.: Mechanism of formation of the heaviest pollution episode
ever recorded in the Yangtze River Delta, China, Atmos. Environ., 42,
2023–2036, https://doi.org/10.1016/j.atmosenv.2007.12.002, 2008.
Gidhagen, L., Johansson, C., Langner, J., and Foltescu, V. L.: Urban scale
modeling of particle number concentration in Stockholm, Atmos. Environ., 39,
1711–1725, https://doi.org/10.1016/j.atmosenv.2004.11.042, 2005.
Gimson, N. R.: Dispersion and removal of pollutants during the passage of an
atmospheric frontal system, Q. J. Roy. Meteor. Soc., 120, 139–160, https://doi.org/10.1002/qj.49712051509, 1994.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guo, J., Deng, M., Lee, S. S., Wang, F., Li, Z., Zhai, P., Liu, H., Lv, W.,
Yao, W., and Li, X.: Delaying precipitation and lightning by air pollution
over the Pearl River Delta. Part I: observational analyses, J. Geophys. Res.-Atmos., 121, 6472–6488, https://doi.org/10.1002/2015JD023257, 2016a.
Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., He, J., Lou, M., Yan, Y., Bian, L., and Zhai, P.: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data, Atmos. Chem. Phys., 16, 13309–13319, https://doi.org/10.5194/acp-16-13309-2016, 2016b.
Guo, J., Chen, X., Su, T., Liu, L., Zheng, Y., Chen, D., Li, J., Xu, H., Lv,
Y., and He, B.: The climatology of lower tropospheric temperature inversions
in China from radiosonde measurements: roles of black carbon, local
meteorology, and large-scale subsidence, J. Climate, 33, 9327–9350, https://doi.org/10.1175/JCLI-D-19-0278.1, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], available at: https://cds.climate.copernicus.eu/ (last access: 22 January 2020), 2018.
Hu, Y., Wang, S., Ning, G., Zhang, Y., Wang, J., and Shang, Z.: A
quantitative assessment of the air pollution purification effect of a super
strong cold-air outbreak in January 2016 in China, Air Qual. Atmos. Hlth.,
11, 907–923, https://doi.org/10.1007/s11869-018-0592-2, 2018.
Huang, G.: A stepwise cluster analysis method for predicting air quality in
an urban environment, Atmos. Environ., 26, 349–357, https://doi.org/10.1016/0957-1272(92)90010-P, 1992.
Kalkstein, L. S. and Corrigan, P.: A Synoptic climatological approach for
geographical analysis: assessment of sulfur dioxide concentrations, Ann.
Assoc. Am. Geogr., 76, 381–395, https://doi.org/10.1111/j.1467-8306.1986.tb00126.x,
1986.
Kang, H., Zhu, B., Gao, J., He, Y., Wang, H., Su, J., Pan, C., Zhu, T., and Yu, B.: Potential impacts of cold frontal passage on air quality over the Yangtze River Delta, China, Atmos. Chem. Phys., 19, 3673–3685, https://doi.org/10.5194/acp-19-3673-2019, 2019.
Karl, T. R., Knight, R. W., and Plummer, N.: Trends in high-frequency
climate variability in the twentieth century, Nature, 377, 217–220, https://doi.org/10.1038/377217a0, 1995.
Karppinen, A., Joffre, S. M., Kukkonen, J., and Bremer, P.: Evaluation of
inversion strengths and mixing heights during extremely stable atmospheric
stratification, Int. J. Environ. Pollut., 16, 603–613, https://doi.org/10.1504/IJEP.2001.000653, 2001.
Kelly, F. J. and Zhu, T.: Transport solutions for cleaner air, Science,
352, 934–936, https://doi.org/10.1126/science.aaf3420, 2016.
Li, Y., Chen, Q., Zhao, H., Wang, L., and Tao, R.: Variations in PM10,
PM2.5 and PM1.0 in an urban area of the Sichuan Basin and their
relation to meteorological factors, Atmosphere, 6, 150–163, 2015.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H.,
Zhang, H., and Zhu, B.: Aerosol and boundary-layer interactions and impact
on air quality, Natl. Sci. Rev., 4, 810–833, https://doi.org/10.1093/nsr/nwx117, 2017.
Liao, T., Wang, S., Ai, J., Gui, K., Duan, B., Zhao, Q., Zhang, X., Jiang,
W., and Sun, Y.: Heavy pollution episodes, transport pathways and potential
sources of PM2.5 during the winter of 2013 in Chengdu (China), Sci.
Total Environ., 584, 1056–1065, https://doi.org/10.1016/j.scitotenv.2017.01.160,
2017.
Lu, C., Deng, Q.-H., Liu, W.-W., Huang, B.-L., and Shi, L.-Z.:
Characteristics of ventilation coefficient and its impact on urban air
pollution, J. Cent. South Univ., 19, 615–622, https://doi.org/10.1007/s11771-012-1047-9, 2012.
Luo, M. and Lau, N.-C.: Heat waves in southern China: synoptic behavior,
long-term change, and urbanization effects, J. Climate, 30, 703–720, https://doi.org/10.1175/JCLI-D-16-0269.1, 2017.
Luo, M., Hou, X., Gu, Y., Lau, N.-C., and Yim, S. H.-L.: Trans-boundary air
pollution in a city under various atmospheric conditions, Sci. Total
Environ., 618, 132–141, https://doi.org/10.1016/j.scitotenv.2017.11.001, 2018.
MacQueen, J.: Some methods for classification and analysis of multivariate
observations, Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, 281–297, 1967.
MEP: Ministry of Environmental Protection of the People's Republic of China (MEP): Technical Regulation on Ambient Air Quality Index (on Trial): HJ 633-2012, [data set] available at: http://www.mee.gov.cn/xxgk2018/ (last access: 22 January 2020), 2012.
MEP: Technical regulation on ambient air quality assessment (on trial)
(HJ663-2013), China Environmental Science Press, Beijing, China, 14 pp., 2013.
Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., and Zhai, P.: Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmos. Chem. Phys., 17, 3097–3110, https://doi.org/10.5194/acp-17-3097-2017, 2017.
Miao, Y., Liu, S., Guo, J., Huang, S., Yan, Y., and Lou, M.: Unraveling the
relationships between boundary layer height and PM2.5 pollution in China
based on four-year radiosonde measurements, Environ. Pollut., 243,
1186–1195, https://doi.org/10.1016/j.envpol.2018.09.070, 2018.
Mokdad, F. and Haddad, B.: Improved infrared precipitation estimation
approaches based on K-means clustering: application to north Algeria using
MSG-SEVIRI satellite data, Adv. Space Res., 59, 2880–2900, https://doi.org/10.1016/j.asr.2017.03.027, 2017.
Ning, G., Wang, S., Ma, M., Ni, C., Shang, Z., Wang, J., and Li, J.:
Characteristics of air pollution in different zones of Sichuan Basin, China,
Sci. Total Environ., 612, 975–984, https://doi.org/10.1016/j.scitotenv.2017.08.205,
2018a.
Ning, G., Wang, S., Yim, S. H. L., Li, J., Hu, Y., Shang, Z., Wang, J., and Wang, J.: Impact of low-pressure systems on winter heavy air pollution in the northwest Sichuan Basin, China, Atmos. Chem. Phys., 18, 13601–13615, https://doi.org/10.5194/acp-18-13601-2018, 2018b.
Ning, G., Yim, S. H. L., Wang, S., Duan, B., Nie, C., Yang, X., Wang, J.,
and Shang, K.: Synergistic effects of synoptic weather patterns and
topography on air quality: a case of the Sichuan Basin of China, Clim. Dynam.,
53, 6729–6744, https://doi.org/10.1007/s00382-019-04954-3, 2019.
Ning, G., Yim, S. H. L., Yang, Y., Gu, Y., and Dong, G.: Modulations of
synoptic and climatic changes on ozone pollution and its health risks in
mountain-basin areas, Atmos. Environ., 240, 117808, https://doi.org/10.1016/j.atmosenv.2020.117808, 2020.
Qiu, H., Yu, H., Wang, L., Zhu, X., Chen, M., Zhou, L., Deng, R., Zhang, Y.,
Pu, X., and Pan, J.: The burden of overall and cause-specific respiratory
morbidity due to ambient air pollution in Sichuan Basin, China: a multi-city
time-series analysis, Environ. Res., 167, 428–436, https://doi.org/10.1016/j.envres.2018.08.011, 2018.
Slingo, J. M.: The development and verification of a cloud prediction scheme
for the ECMWF model, Q. J. Roy. Meteor. Soc., 113, 899–927, https://doi.org/10.1002/qj.49711347710, 1987.
Standards Press of China (SPC): National Standards of People's Republic of China: Specifications for Surface Meteorological Observation, [data set] GB/T 35221–2017, available at: http://data.cma.cn/data/ (last access: 22 January 2020), SPC, Beijing, 32 pp., 2017.
Streets, D. G., Gupta, S., Waldhoff, S. T., Wang, M. Q., Bond, T. C., and
Yiyun, B.: Black carbon emissions in China, Atmos. Environ., 35, 4281–4296,
https://doi.org/10.1016/S1352-2310(01)00179-0, 2001.
Su, T., Li, Z., Zheng, Y., Luan, Q., and Guo, J.: Abnormally shallow
boundary layer associated with severe air pollution during the COVID-19
lockdown in China, Geophys. Res. Lett., 47, e2020GL090041, https://doi.org/10.1029/2020GL090041, 2020.
Wang, W., Kuo, Y.-H., and Warner, T. T.: A diabatically driven mesoscale
vortex in the lee of the Tibetan Plateau, Mon. Weather Rev., 121, 2542–2561,
https://doi.org/10.1175/1520-0493(1993)121< 2542:ADDMVI>2.0.CO;2,
1993.
Wang, X., Dickinson, R. E., Su, L., Zhou, C., and Wang, K.: PM2.5
pollution in China and how it has been exacerbated by terrain and
meteorological conditions, Bull. Am. Meteorol. Soc., 99, 105–119, https://doi.org/10.1175/BAMS-D-16-0301.1, 2018.
Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y.,
Hu, B., and Xin, J.: Mechanism for the formation of the January 2013 heavy
haze pollution episode over central and eastern China, Sci. China Earth
Sci., 57, 14–25, https://doi.org/10.1007/s11430-013-4773-4, 2014.
Wei, P., Cheng, S., Li, J., and Su, F.: Impact of boundary-layer
anticyclonic weather system on regional air quality, Atmos. Environ., 45,
2453–2463, https://doi.org/10.1016/j.atmosenv.2011.01.045, 2011.
Wei, W., Zhang, R., Wen, M., Rong, X., and Li, T.: Impact of Indian summer
monsoon on the South Asian High and its influence on summer rainfall over
China, Clim. Dynam., 43, 1257–1269, https://doi.org/10.1007/s00382-013-1938-y, 2014.
Xiao, Q., Ma, Z., Li, S., and Liu, Y.: The impact of winter heating on air
pollution in China, PLoS One, 10, e0117311, https://doi.org/10.1371/journal.pone.0117311, 2015.
Xu, T., Song, Y., Liu, M., Cai, X., Zhang, H., Guo, J., and Zhu, T.:
Temperature inversions in severe polluted days derived from radiosonde data
in North China from 2011 to 2016, Sci. Total Environ., 647, 1011–1020, https://doi.org/10.1016/j.scitotenv.2018.08.088, 2019.
Yarnal, B.: Synoptic climatology in environmental analysis: a primer,
Belhaven Press, London, 256 pp., 1993.
Ye, X., Song, Y., Cai, X., and Zhang, H.: Study on the synoptic flow
patterns and boundary layer process of the severe haze events over the North
China Plain in January 2013, Atmos. Environ., 124, 129–145, https://doi.org/10.1016/j.atmosenv.2015.06.011, 2016.
Yu, S., Gao, W., Xiao, D., and Peng, J.: Observational facts regarding the
joint activities of the southwest vortex and plateau vortex after its
departure from the Tibetan Plateau, Adv. Atmos. Sci., 33, 34–46, https://doi.org/10.1007/s00376-015-5039-1, 2016.
Zhang, L., Guo, X., Zhao, T., Gong, S., Xu, X., Li, Y., Luo, L., Gui, K.,
Wang, H., Zheng, Y., and Yin, X.: A modelling study of the terrain effects
on haze pollution in the Sichuan Basin, Atmos. Environ., 196, 77–85, https://doi.org/10.1016/j.atmosenv.2018.10.007, 2019.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols, Atmos. Chem. Phys., 12, 779–799, https://doi.org/10.5194/acp-12-779-2012, 2012.
Zhang, Y., Guo, J., Yang, Y., Wang, Y., and Yim, S. H. L.: Vertical wind
shear modulates particulate matter pollutions: A perspective from radar wind
profiler observations in Beijing, China, Remote Sens., 12, 546, https://doi.org/10.3390/rs12030546, 2020.
Zhang, Z., Zhang, X., Gong, D., Kim, S.-J., Mao, R., and Zhao, X.: Possible influence of atmospheric circulations on winter haze pollution in the Beijing–Tianjin–Hebei region, northern China, Atmos. Chem. Phys., 16, 561–571, https://doi.org/10.5194/acp-16-561-2016, 2016.
Zhao, S., Yu, Y., Yin, D., Qin, D., He, J., and Dong, L.: Spatial patterns
and temporal variations of six criteria air pollutants during 2015 to 2017
in the city clusters of Sichuan Basin, China, Sci. Total Environ., 624,
540–557, https://doi.org/10.1016/j.scitotenv.2017.12.172, 2018.
Zhu, S., Xia, L., Wu, J., Chen, S., Chen, F., Zeng, F., Chen, X., Chen, C.,
Xia, Y., Zhao, X., and Zhang, J.: Ambient air pollutants are associated with
newly diagnosed tuberculosis: a time-series study in Chengdu, China, Sci.
Total Environ., 631, 47–55, https://doi.org/10.1016/j.scitotenv.2018.03.017, 2018.
Short summary
This study provides the first attempt to examine the diurnal cycles of day-to-day temperature change and reveals their impacts on air quality forecasting in mountain-basin areas. Three different diurnal cycles of the preceding day-to-day temperature change are identified and exhibit notably distinct effects on the air quality evolutions. The mechanisms of the identified diurnal cycles' effects on air quality are also revealed, which exhibit promising potential for air quality forecasting.
This study provides the first attempt to examine the diurnal cycles of day-to-day temperature...
Altmetrics
Final-revised paper
Preprint