Articles | Volume 21, issue 18
https://doi.org/10.5194/acp-21-13855-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-13855-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interhemispheric differences of mesosphere–lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations
Institute of Applied Physics & Oeschger Center for Climate Change Research, Microwave Physics, University of Bern, Bern, Switzerland
Ales Kuchar
Institute for Meteorology, Universität Leipzig, Leipzig, Germany
Dimitry Pokhotelov
Institute for Solar–Terrestrial Physics, German Aerospace Center (DLR), Neustrelitz, Germany
Huixin Liu
Department of Earth and Planetary Science, Kyushu University, Fukuoka, Japan
Han-Li Liu
High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
Hauke Schmidt
Max Planck Institute for Meteorology, Hamburg, Germany
Christoph Jacobi
Institute for Meteorology, Universität Leipzig, Leipzig, Germany
Kathrin Baumgarten
Fraunhofer Institute for Computer Graphics Research IGD, Rostock, Germany
Peter Brown
Dept. of Physics and Astronomy, University of Western Ontario,
London, Ontario, N6A 3K7, Canada
Western Institute for Earth and Space Exploration, University of Western Ontario, London, Ontario, N6A 5B7, Canada
Diego Janches
ITM Physics Laboratory, Mail Code 675, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Damian Murphy
Australian Antarctic Division, Kingston, Tasmania, Australia
Alexander Kozlovsky
Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland
Mark Lester
Department of Physics and Astronomy, University of Leicester, Leicester, UK
Evgenia Belova
Swedish Institute of Space Physics, Kiruna, Sweden
Johan Kero
Swedish Institute of Space Physics, Kiruna, Sweden
Nicholas Mitchell
British Antarctic Survey, Cambridge, UK
Department of Electronic & Electrical Engineering, University of Bath, Bath, UK
Data sets
ETOPO1 1 Arc-Minute Global Relief Model NOAA National Geophysical Data Center https://doi.org/10.26024/5b58-nc53
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Little is known about the climate change of wind systems in the mesosphere and lower...
Altmetrics
Final-revised paper
Preprint