Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-13067-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-13067-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Indirect evidence for the controlling influence of acidity on the speciation of iodine in Atlantic aerosols
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Chan Yodle
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
now at: Department of Environmental Science, Faculty of Science and
Technology, Chiang Mai Rajabhat University, Chiang Mai, 50300, Thailand
Related authors
Mingjin Tang, Morgane M. G. Perron, Alex R. Baker, Rui Li, Andrew R. Bowie, Clifton S. Buck, Ashwini Kumar, Rachel Shelley, Simon J. Ussher, Rob Clough, Scott Meyerink, Prema P. Panda, Ashley T. Townsend, and Neil Wyatt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3274, https://doi.org/10.5194/egusphere-2025-3274, 2025
Short summary
Short summary
This work, initiated by the SCOR (Scientific Committee on Oceanic Research) Working Group 167, has examined eight leaching protocols commonly used in the literature, is the first large-scale international laboratory comparison for aerosol trace element leaching protocols.
Rachel U. Shelley, Alex R. Baker, Max Thomas, and Sam Murphy
Biogeosciences, 22, 585–600, https://doi.org/10.5194/bg-22-585-2025, https://doi.org/10.5194/bg-22-585-2025, 2025
Short summary
Short summary
The fractions of trace elements in atmospheric particles that are soluble have been measured over the Mediterranean and Black seas. These soluble fractions can affect the growth of microorganisms in the ocean, and our results show that they are affected by mixing with pollutants from the surrounding land and shipping emissions. Atmospheric particles contribute to the loads of soluble elements found in the surface waters and influence the balance between nitrogen and phosphorus.
Mingjin Tang, Morgane M. G. Perron, Alex R. Baker, Rui Li, Andrew R. Bowie, Clifton S. Buck, Ashwini Kumar, Rachel Shelley, Simon J. Ussher, Rob Clough, Scott Meyerink, Prema P. Panda, Ashley T. Townsend, and Neil Wyatt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3274, https://doi.org/10.5194/egusphere-2025-3274, 2025
Short summary
Short summary
This work, initiated by the SCOR (Scientific Committee on Oceanic Research) Working Group 167, has examined eight leaching protocols commonly used in the literature, is the first large-scale international laboratory comparison for aerosol trace element leaching protocols.
Rachel U. Shelley, Alex R. Baker, Max Thomas, and Sam Murphy
Biogeosciences, 22, 585–600, https://doi.org/10.5194/bg-22-585-2025, https://doi.org/10.5194/bg-22-585-2025, 2025
Short summary
Short summary
The fractions of trace elements in atmospheric particles that are soluble have been measured over the Mediterranean and Black seas. These soluble fractions can affect the growth of microorganisms in the ocean, and our results show that they are affected by mixing with pollutants from the surrounding land and shipping emissions. Atmospheric particles contribute to the loads of soluble elements found in the surface waters and influence the balance between nitrogen and phosphorus.
Cited articles
Agrawal, H., Welch, W. A., Miller, J. W., and Cocker, D. R.:
Emission measurements from a crude oil tanker at sea, Environ. Sci.
Technol., 42, 7098–7103, https://doi.org/10.1021/es703102y, 2008.
Allan, J. D., Topping, D. O., Good, N., Irwin, M., Flynn, M., Williams, P. I., Coe, H., Baker, A. R., Martino, M., Niedermeier, N., Wiedensohler, A., Lehmann, S., Müller, K., Herrmann, H., and McFiggans, G.: Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates, Atmos. Chem. Phys., 9, 9299–9314, https://doi.org/10.5194/acp-9-9299-2009, 2009.
Andreae, M. O.: Soot carbon and excess fine potassium: Long-range transport
of combustion-derived aerosols, Science, 220, 1148–1151, 1983.
Baker, A. R.: Inorganic iodine speciation in tropical Atlantic aerosol,
Geophys. Res. Lett., 31, L23S02, https://doi.org/10.1029/2004GL020144, 2004.
Baker, A. R.: Marine aerosol iodine chemistry: The importance of soluble
organic iodine, Environ. Chem., 2, 295–298, 2005.
Baker, A. R. and Jickells, T. D.: Atmospheric deposition of soluble trace
elements along the Atlantic Meridional Transect (AMT), Prog.
Oceanogr., 158, 41–51, https://doi.org/10.1016/j.pocean.2016.10.002, 2017.
Baker, A. R., Thompson, D., Campos, M. L. A. M., Parry, S. J., and Jickells,
T. D.: Iodine concentration and availability in atmospheric aerosol,
Atmos. Environ., 34, 4331–4336, 2000.
Baker, A. R., Jickells, T. D., Biswas, K. F., Weston, K., and French, M.:
Nutrients in atmospheric aerosol particles along the AMT transect, Deep-Sea
Res. Pt. II, 53, 1706–1719, 2006.
Baker, A. R., Li, M., and Chance, R. J.: Trace metal fractional solubility
in size-segregated aerosols from the tropical eastern Atlantic Ocean, Global
Biogeochem. Cy., 34, e2019GB006510, https://doi.org/10.1029/2019GB006510, 2020.
Baker, A. R., Kanakidou, M., Nenes, A., Myriokefalitakis, S., Croot, P. L.,
Duce, R. A., Gao, Y., Ito, A., Jickells, T. D., Mahowald, N. M., Middag, R.,
Perron, M. M. G., Sarin, M. M., Shelley, R. U., and Turner, D. R.: Changing
atmospheric acidity as a modulator of nutrient deposition and ocean
biogeochemistry, Sci. Adv., 7, eabd8800, https://doi.org/10.1126/sciadv.abd8800,
2021.
Becagli, S., Sferlazzo, D. M., Pace, G., di Sarra, A., Bommarito, C., Calzolai, G., Ghedini, C., Lucarelli, F., Meloni, D., Monteleone, F., Severi, M., Traversi, R., and Udisti, R.: Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a possible large role of ships emissions in the Mediterranean, Atmos. Chem. Phys., 12, 3479–3492, https://doi.org/10.5194/acp-12-3479-2012, 2012.
Carpenter, L. J., MacDonald, S. M., Shaw, M. D., Kumar, R., Saunders, R. W.,
Parthipan, R., Wilson, J., and Plane, J. M. C.: Atmospheric iodine levels
influenced by sea surface emissions of inorganic iodine, Nat. Geosci.,
6, 108–111, https://doi.org/10.1038/ngeo1687, 2013.
Cox, R. A., Bloss, W. J., Jones, R. L., and Rowley, D. M.: OIO and the
atmospheric cycle of iodine, Geophys. Res. Lett., 26, 1857–1860,
1999.
Craig, R. L., Peterson, P. K., Nandy, L., Lei, Z., Hossain, M. A., Camarena,
S., Dodson, R. A., Cook, R. D., Dutcher, C. S., and Ault, A. P.: Direct
determination of aerosol pH: Size-resolved measurements of submicrometer and
supermicrometer aqueous particles, Anal. Chem., 90, 11232–11239,
https://doi.org/10.1021/acs.analchem.8b00586, 2018.
Davis, D., Crawford, J., Liu, S., McKeen, S., Bandy, A., Thornton, D.,
Rowland, F., and Blake, D.: Potential impact of iodine on tropospheric
levels of ozone and other critical oxidants, J. Geophys.
Res., 101, 2135–2147, 1996.
Gomez Martin, J. C., Saiz Lopez, A., Cuevas, C. A., Fernandez, R. P.,
Gilfedder, B. S., Weller, R., Baker, A. R., Droste, E., and Lai, S. C.:
Spatial and temporal variability of iodine in aerosol, J.
Geophys. Res., 126, e2020JD034410, https://doi.org/10.1029/2020JD034410, 2021.
Kanthale, P., Ashokkumar, M., and Grieser, F.: Sonoluminescence,
sonochemistry (H2O2 yield) and bubble dynamics: Frequency and
power effects, Ultrason. Sonochem., 15, 143–150, 2008.
Kawamura, K. and Ikushima, K.: Seasonal changes in the distribution of
dicarboxylic acids in the urban atmosphere, Environ. Sci.
Technol., 27, 2227–2235, https://doi.org/10.1021/es00047a033, 1993.
Lai, S. C., Hoffmann, T., and Xie, Z. Q.: Iodine speciation in marine
aerosols along a 30 000 km round-trip cruise path from Shanghai, China to
Prydz Bay, Antarctica, Geophys. Res. Lett., 35, L21803,
https://doi.org/10.1029/2008GL035492, 2008.
Lai, S. C., Williams, J., Arnold, S. R., Atlas, E. L., Gebhardt, S., and
Hoffmann, T.: Iodine containing species in the remote marine boundary layer:
A link to oceanic phytoplankton, Geophys. Res. Lett., 38, L20801,
https://doi.org/10.1029/2011GL049035, 2011.
Lamarque, J. F., Dentener, F., McConnell, J., Ro, C. U., Shaw, M., Vet, R.,
Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G.,
Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell,
D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M.,
Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean
nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate
Model Intercomparison Project (ACCMIP): evaluation of historical and
projected future changes, Atmos. Chem. Phys., 13, 7997–8018,
https://doi.org/10.5194/acp-13-7997-2013, 2013.
Lesworth, T., Baker, A. R., and Jickells, T.: Aerosol organic nitrogen over
the remote Atlantic Ocean, Atmos. Environ., 44, 1887–1893,
https://doi.org/10.1016/j.atmosenv.2010.02.021, 2010.
Lin, C. T., Baker, A. R., Jickells, T. D., Kelly, S., and Lesworth, T.: An
assessment of the significance of sulphate sources over the Atlantic Ocean
based on sulphur isotope data, Atmos. Environ., 62, 615–621,
https://doi.org/10.1016/j.atmosenv.2012.08.052, 2012.
Losno, R., Bergametti, G., and Carlier, P.: Origins of atmospheric
particulate matter over the North Sea and the Atlantic Ocean, J.
Atmos. Chem., 15, 333–352, 1992.
Martinelango, P. K., Dasgupta, P. K., and Al-Horr, R. S.: Atmospheric
production of oxalic acid oxalate and nitric acid nitrate in the Tampa Bay
airshed: Parallel pathways, Atmos. Environ., 41, 4258–4269,
https://doi.org/10.1016/j.atmosenv.2006.05.085, 2007.
McFiggans, G., Plane, J. M. C., Allan, B. J., Carpenter, L. J., Coe, H., and
O'Dowd, C.: A modeling study of iodine chemistry in the marine boundary
layer, J. Geophys. Res., 105, 14371–14385, 2000.
Narukawa, M., Kawamura, K., Takeuchi, N., and Nakajima, T.: Distribution of
dicarboxylic acids and carbon isotopic compositions in aerosols from 1997
Indonesian forest fires, Geophys. Res. Lett., 26, 3101–3104,
https://doi.org/10.1029/1999gl010810, 1999.
Nickovic, S., Vukovic, A., Vujadinovic, M., Djurdjevic, V., and Pejanovic, G.: Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling, Atmos. Chem. Phys., 12, 845–855, https://doi.org/10.5194/acp-12-845-2012, 2012.
O'Dowd, C. D., Hameri, K., Makela, J. M., Pirjola, L., Kulmala, M.,
Jennings, S. G., Berresheim, H., Hansson, H. C., de Leeuw, G., Kunz, G. J.,
Allen, A. G., Hewitt, C. N., Jackson, A., Viisanen, Y., and Hoffmann, T.: A
dedicated study of New Particle Formation and Fate in the Coastal
Environment (PARFORCE): Overview of objectives and achievements, J.
Geophys. Res.-Atmos., 107, 8108, https://doi.org/10.1029/2001jd000555, 2002.
Pechtl, S., Schmitz, G., and von Glasow, R.: Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry, Atmos. Chem. Phys., 7, 1381–1393, https://doi.org/10.5194/acp-7-1381-2007, 2007.
Plane, J. M. C., Joseph, D. M., Allan, B. J., Ashworth, S. H., and
Francisco, J. S.: An experimental and theoretical study of the reactions OIO
plus NO and OH plus OH, J. Phys. Chem. A, 110, 93–100, 2006.
Powell, C. F., Baker, A. R., Jickells, T. D., Bange, H. W., Chance, R., and
Yodle, C.: Estimation of the atmospheric flux of nutrients and trace metals
to the eastern tropical North Atlantic Ocean, J. Atmos.
Sci. Am. Meteorol. Soc., 72, 4029–4045,
https://doi.org/10.1175/JAS-D-15-0011.1, 2015.
Prados-Roman, C., Cuevas, C. A., Fernandez, R. P., Kinnison, D. E.,
Lamarque, J. F., and Saiz-Lopez, A.: A negative feedback between
anthropogenic ozone pollution and enhanced ocean emissions of iodine,
Atmos. Chem. Phys., 15, 2215–2224, https://doi.org/10.5194/acp-15-2215-2015,
2015.
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020.
Saiz-Lopez, A., Plane, J. M. C., Baker, A. R., Carpenter, L., von Glasow,
R., Gomez-Martin, J. C., McFiggans, G., and Saunders, R. W.: Atmospheric
chemistry of iodine, Chem. Rev., 112, 1773–1804, https://doi.org/10.1021/cr200029u,
2012.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, Bull. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/bams-d-14-00110.1, 2015.
Turekian, K. K. and Wedepohl, K. H.: Distribution of the elements in some
major units of the Earth's crust, Geol. Soc. Am. J., 72,
175–191, 1961.
Vogt, R., Sander, R., von Glasow, R., and Crutzen, P. J.: Iodine chemistry
and its role in halogen activation and ozone loss in the marine boundary
layer: A model study, J. Atmos. Chem., 32, 375–395, 1999.
Whitehead, J. D., McFiggans, G., Gallagher, M. W., and Flynn, M. J.: Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation, Atmos. Chem. Phys., 10, 255–266, https://doi.org/10.5194/acp-10-255-2010, 2010.
Wimschneider, A. and Heumann, K. G.: Iodine speciation in size fractionated
atmospheric particles by isotope dilution mass spectrometry, Fres.
J. Anal. Chem., 353, 191–196, 1995.
Xu, S.-Q., Xie, Z.-Q., Liu, W., Yang, H.-X., and Li, B.: Extraction and
determination of total bromine, iodine, and their species in atmospheric
aerosol, Chinese J. Anal. Chem., 38, 219–224, 2010.
Yodle, C. and Baker, A. R.: Influence of collection substrate and
extraction method on the speciation of soluble iodine in atmospheric
aerosols, Atmos. Environ. X, 1, 100009,
https://doi.org/10.1016/j.aeaoa.2019.100009, 2019.
Yodle, C. and Baker, A. R.:
AMT21 (D371) aerosol chemical composition (major ions, iodine species and soluble trace metals) from size segregated aerosol samples collected October–November 2011, NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/c7a1a7b2-b220-1403-e053-6c86abc039bf, 2021.
Yu, H., Ren, L. L., Huan, X. P., Xie, M. J., He, J., and Xiao, H.: Iodine
speciation and size distribution in ambient aerosols at a coastal new
particle formation hotspot in China, Atmos. Chem. Phys., 19,
4025–4039, https://doi.org/10.5194/acp-19-4025-2019, 2019.
Short summary
Iodine is emitted from the ocean and helps to destroy ozone in the lower atmosphere before being taken up into aerosol particles. We measured the chemical forms of iodine in aerosols over the Atlantic Ocean, because some of these forms can return to the gas phase and destroy more ozone. Our results indicate that aerosol acidity exerts a strong control on iodine speciation and therefore on its recycling behaviour and impact on ozone concentrations.
Iodine is emitted from the ocean and helps to destroy ozone in the lower atmosphere before being...
Altmetrics
Final-revised paper
Preprint