Articles | Volume 21, issue 16
https://doi.org/10.5194/acp-21-12687-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-12687-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Study of different Carbon Bond 6 (CB6) mechanisms by using a concentration sensitivity analysis
Le Cao
CORRESPONDING AUTHOR
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
Simeng Li
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
Luhang Sun
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
Related authors
Xiaochun Zhu, Le Cao, Xin Yang, Simeng Li, Jiandong Wang, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3873, https://doi.org/10.5194/egusphere-2024-3873, 2025
Short summary
Short summary
We applied various criteria to identify springtime ODEs at Utqiagvik, Arctic, and investigated the influences of using different criteria on conclusions regarding the characteristics of ODEs. We found criteria using a constant threshold and using thresholds based on the monthly averaged ozone more suitable for identifying ODEs than the others. Applying a threshold varying with the monthly average or stricter thresholds also signifies a more significant reduction in the ODE occurrences.
Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang
Atmos. Chem. Phys., 24, 12623–12642, https://doi.org/10.5194/acp-24-12623-2024, https://doi.org/10.5194/acp-24-12623-2024, 2024
Short summary
Short summary
We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems.
Le Cao, Simeng Li, Yicheng Gu, and Yuhan Luo
Atmos. Chem. Phys., 23, 3363–3382, https://doi.org/10.5194/acp-23-3363-2023, https://doi.org/10.5194/acp-23-3363-2023, 2023
Short summary
Short summary
We performed a 3-D mesoscale model study on ozone depletion events (ODEs) occurring in the spring of 2019 at Barrow using an air quality model, CMAQ. Many ODEs observed at Barrow were captured by the model, and the contribution from each physical or chemical process to ozone and bromine species during ODEs was quantitatively evaluated. We found the ODEs at Barrow to be strongly influenced by horizontal transport. In contrast, over the sea, local chemistry significantly reduced the surface ozone.
Le Cao, Linjie Fan, Simeng Li, and Shuangyan Yang
Atmos. Chem. Phys., 22, 3875–3890, https://doi.org/10.5194/acp-22-3875-2022, https://doi.org/10.5194/acp-22-3875-2022, 2022
Short summary
Short summary
We analyzed the observational data and used models to discover the impact of the total ozone column (TOC) on the occurrence of tropospheric ozone depletion events (ODE) in the Antarctic. The results suggest that the decrease of TOC favors the occurrence of ODE. When TOC varies the rates of major ODE accelerating reactions are substantially altered but the rates of major ODE decelerating reactions remain unchanged. As a result, the occurrence of ODE negatively depends on the TOC.
Hongyi Ding, Le Cao, Haimei Jiang, Wenxing Jia, Yong Chen, and Junling An
Geosci. Model Dev., 14, 6135–6153, https://doi.org/10.5194/gmd-14-6135-2021, https://doi.org/10.5194/gmd-14-6135-2021, 2021
Short summary
Short summary
We performed a WRF model study to figure out the mechanism of how the change in minimum eddy diffusivity (Kzmin) in the planetary boundary layer (PBL) closure scheme (ACM2) affects the simulated near-surface temperature in Beijing, China. Moreover, the influence of changing Kzmin on the temperature prediction in areas with different land-use categories was studied. The model performance using a functional-type Kzmin for capturing the temperature change in this area was also clarified.
Zhuozhi Shu, Yubao Liu, Tianliang Zhao, Junrong Xia, Chenggang Wang, Le Cao, Haoliang Wang, Lei Zhang, Yu Zheng, Lijuan Shen, Lei Luo, and Yueqing Li
Atmos. Chem. Phys., 21, 9253–9268, https://doi.org/10.5194/acp-21-9253-2021, https://doi.org/10.5194/acp-21-9253-2021, 2021
Short summary
Short summary
Focusing on a heavy haze pollution event in the Sichuan Basin (SCB), we investigated the elevated 3D structure of PM2.5 and trans-boundary transport with the WRF-Chem simulation. It is remarkable for vertical PM2.5 that the unique hollows were structured, which which occurred by the interaction of vortex circulations and topographic effects. The SCB was regarded as the major air pollutant source with the trans-boundary transport of PM2.5 affecting atmospheric environment changes.
Simeng Li, Enrico Dammers, Arjo Segers, and Jan Willem Erisman
EGUsphere, https://doi.org/10.5194/egusphere-2025-2826, https://doi.org/10.5194/egusphere-2025-2826, 2025
Short summary
Short summary
Between 2019 and 2022, a notable reduction in livestock numbers has been observed on Schiermonnikoog, a small island in the north of the Netherlands. We have assessed ammonia emissions using real-world measurements on the island, demonstrated emission decrease, and proposed a network to improve emission monitoring.
Xiaochun Zhu, Le Cao, Xin Yang, Simeng Li, Jiandong Wang, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3873, https://doi.org/10.5194/egusphere-2024-3873, 2025
Short summary
Short summary
We applied various criteria to identify springtime ODEs at Utqiagvik, Arctic, and investigated the influences of using different criteria on conclusions regarding the characteristics of ODEs. We found criteria using a constant threshold and using thresholds based on the monthly averaged ozone more suitable for identifying ODEs than the others. Applying a threshold varying with the monthly average or stricter thresholds also signifies a more significant reduction in the ODE occurrences.
Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang
Atmos. Chem. Phys., 24, 12623–12642, https://doi.org/10.5194/acp-24-12623-2024, https://doi.org/10.5194/acp-24-12623-2024, 2024
Short summary
Short summary
We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems.
Le Cao, Simeng Li, Yicheng Gu, and Yuhan Luo
Atmos. Chem. Phys., 23, 3363–3382, https://doi.org/10.5194/acp-23-3363-2023, https://doi.org/10.5194/acp-23-3363-2023, 2023
Short summary
Short summary
We performed a 3-D mesoscale model study on ozone depletion events (ODEs) occurring in the spring of 2019 at Barrow using an air quality model, CMAQ. Many ODEs observed at Barrow were captured by the model, and the contribution from each physical or chemical process to ozone and bromine species during ODEs was quantitatively evaluated. We found the ODEs at Barrow to be strongly influenced by horizontal transport. In contrast, over the sea, local chemistry significantly reduced the surface ozone.
Le Cao, Linjie Fan, Simeng Li, and Shuangyan Yang
Atmos. Chem. Phys., 22, 3875–3890, https://doi.org/10.5194/acp-22-3875-2022, https://doi.org/10.5194/acp-22-3875-2022, 2022
Short summary
Short summary
We analyzed the observational data and used models to discover the impact of the total ozone column (TOC) on the occurrence of tropospheric ozone depletion events (ODE) in the Antarctic. The results suggest that the decrease of TOC favors the occurrence of ODE. When TOC varies the rates of major ODE accelerating reactions are substantially altered but the rates of major ODE decelerating reactions remain unchanged. As a result, the occurrence of ODE negatively depends on the TOC.
Hongyi Ding, Le Cao, Haimei Jiang, Wenxing Jia, Yong Chen, and Junling An
Geosci. Model Dev., 14, 6135–6153, https://doi.org/10.5194/gmd-14-6135-2021, https://doi.org/10.5194/gmd-14-6135-2021, 2021
Short summary
Short summary
We performed a WRF model study to figure out the mechanism of how the change in minimum eddy diffusivity (Kzmin) in the planetary boundary layer (PBL) closure scheme (ACM2) affects the simulated near-surface temperature in Beijing, China. Moreover, the influence of changing Kzmin on the temperature prediction in areas with different land-use categories was studied. The model performance using a functional-type Kzmin for capturing the temperature change in this area was also clarified.
Zhuozhi Shu, Yubao Liu, Tianliang Zhao, Junrong Xia, Chenggang Wang, Le Cao, Haoliang Wang, Lei Zhang, Yu Zheng, Lijuan Shen, Lei Luo, and Yueqing Li
Atmos. Chem. Phys., 21, 9253–9268, https://doi.org/10.5194/acp-21-9253-2021, https://doi.org/10.5194/acp-21-9253-2021, 2021
Short summary
Short summary
Focusing on a heavy haze pollution event in the Sichuan Basin (SCB), we investigated the elevated 3D structure of PM2.5 and trans-boundary transport with the WRF-Chem simulation. It is remarkable for vertical PM2.5 that the unique hollows were structured, which which occurred by the interaction of vortex circulations and topographic effects. The SCB was regarded as the major air pollutant source with the trans-boundary transport of PM2.5 affecting atmospheric environment changes.
Cited articles
Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, 2013. a
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. a
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. a
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, https://doi.org/10.5194/acp-7-981-2007, 2007. a
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species, Atmos. Chem. Phys., 8, 4141–4496, https://doi.org/10.5194/acp-8-4141-2008, 2008. a
Bash, J. O., Baker, K. R., and Beaver, M. R.: Evaluation of improved land use and canopy representation in BEIS v3.61 with biogenic VOC measurements in California, Geosci. Model Dev., 9, 2191–2207, https://doi.org/10.5194/gmd-9-2191-2016, 2016. a, b
Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., and Pilling, M. J.: Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5, 641–664, https://doi.org/10.5194/acp-5-641-2005, 2005. a
Byun, D. and Schere, K. L.:
Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System,
Appl. Mech. Rev.,
59, 51–77, https://doi.org/10.1115/1.2128636, 2006. a, b, c, d
Cao, L.: The source code and the data of computational results for “Study of different Carbon Bond 6 (CB6) mechanisms by using a concentration sensitivity analysis”, NUIST Information Platform [code and data set], available at: https://faculty.nuist.edu.cn/caole/en/kyxm/72647/content/17260.htm#kyxm, last access: 20 August 2021. a
Cao, L., Sihler, H., Platt, U., and Gutheil, E.: Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere, Atmos. Chem. Phys., 14, 3771–3787, https://doi.org/10.5194/acp-14-3771-2014, 2014. a
Cao, L., Wang, C., Mao, M., Grosshans, H., and Cao, N.:
Derivation of the reduced reaction mechanisms of ozone depletion events in the Arctic spring by using concentration sensitivity analysis and principal component analysis, Atmos. Chem. Phys., 16, 14853–14873, https://doi.org/10.5194/acp-16-14853-2016, 2016. a
Cao, L., Gao, M., Li, S., Yi, Z., and Meng, X.:
Sensitivity analysis of the dependence of the Carbon Bond Mechanism IV (CBM-IV) on the initial air composition under an urban condition, Atmospheric Environment, 215, 116 860, https://doi.org/10.1016/j.atmosenv.2019.116860, 2019. a
Carter, W. P.:
Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment, Tech. Rep. 329,
California Air Resources Board, Riverside, CA, USA, 2000a. a
Carter, W. P.:
Implementation of the SAPRC-99 chemical mechanism into the Models-3 framework, Tech. rep.,
United States Environmental Protection Agency, Riverside, CA, USA, 2000b. a
Carter, W. P.:
Development of the SAPRC-07 chemical mechanism,
Atmos. Environ.,
44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010. a
Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates, Atmos. Chem. Phys., 10, 9059–9223, https://doi.org/10.5194/acp-10-9059-2010, 2010. a
Derwent, R.:
Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions,
J. Air Waste Manage.,
67, 789–796, https://doi.org/10.1080/10962247.2017.1292969, 2017. a
Derwent, R. G.:
Representing Organic Compound Oxidation in Chemical Mechanisms for Policy-Relevant Air Quality Models under Background Troposphere Conditions,
Atmosphere,
11, 171, https://doi.org/10.3390/atmos11020171, 2020. a, b
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010. a
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.:
Fully coupled “online” chemistry within the WRF model,
Atmos. Environ.,
39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. a
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. a
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012. a
Hauglustaine, D. A., Granier, C., Brasseur, G. P., and Mégie, G.:
The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system,
J. Geophys. Res.-Atmos.,
99, 1173–1186, https://doi.org/10.1029/93JD02987, 1994. a, b
Jenkin, M. E., Saunders, S. M., and Pilling, M. J.:
The tropospheric degradation of volatile organic compounds: a protocol for mechanism development,
Atmos. Environ.,
31, 81–104, https://doi.org/10.1016/S1352-2310(96)00105-7, 1997. a
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003. a
Jenkin, M. E., Wyche, K. P., Evans, C. J., Carr, T., Monks, P. S., Alfarra, M. R., Barley, M. H., McFiggans, G. B., Young, J. C., and Rickard, A. R.: Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene, Atmos. Chem. Phys., 12, 5275–5308, https://doi.org/10.5194/acp-12-5275-2012, 2012. a
Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015. a
Luecken, D., Hutzell, W., and Gipson, G.:
Development and analysis of air quality modeling simulations for hazardous air pollutants,
Atmos. Environ.,
40, 5087–5096, https://doi.org/10.1016/j.atmosenv.2005.12.044, 2006. a
Luecken, D., Phillips, S., Sarwar, G., and Jang, C.:
Effects of using the CB05 vs. SAPRC99 vs. CB4 chemical mechanism on model predictions: Ozone and gas-phase photochemical precursor concentrations,
Atmos. Environ.,
42, 5805–5820, https://doi.org/10.1016/j.atmosenv.2007.08.056, 2008. a, b
Luecken, D., Yarwood, G., and Hutzell, W.:
Multipollutant modeling of ozone, reactive nitrogen and HAPs across the continental US with CMAQ-CB6,
Atmos. Environ.,
201, 62–72, https://doi.org/10.1016/j.atmosenv.2018.11.060, 2019. a, b, c, d
Luecken, D. J., Napelenok, S. L., Strum, M., Scheffe, R., and Phillips, S.:
Sensitivity of Ambient Atmospheric Formaldehyde and Ozone to Precursor Species and Source Types Across the United States,
Environ. Sci. Tech.,
52, 4668–4675, https://doi.org/10.1021/acs.est.7b05509, 2018. a, b
Madronich, S. and Flocke, S.:
Theoretical Estimation of Biologically Effective UV Radiation at the Earth's Surface,
in: Solar Ultraviolet Radiation,
edited by: Zerefos, C. S. and Bais, A. F.,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 23–48, 1997. a
Madronich, S. and Flocke, S.:
The Role of Solar Radiation in Atmospheric Chemistry,
Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-69044-3_1, pp. 1–26, 1999. a
Marvin, M. R., Wolfe, G. M., Salawitch, R. J., Canty, T. P., Roberts, S. J., Travis, K. R., Aikin, K. C., de Gouw, J. A., Graus, M., Hanisco, T. F., Holloway, J. S., Hübler, G., Kaiser, J., Keutsch, F. N., Peischl, J., Pollack, I. B., Roberts, J. M., Ryerson, T. B., Veres, P. R., and Warneke, C.:
Impact of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from SENEX,
Atmos. Environ.,
164, 325–336, https://doi.org/10.1016/j.atmosenv.2017.05.049, 2017. a, b, c
Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., and Guenther, A.:
Influence of increased isoprene emissions on regional ozone modeling,
J. Geophys. Res.-Atmos.,
103, 25611–25629, https://doi.org/10.1029/98JD01804, 1998. a
Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Keller-Rudek, H., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L., Ravishankara, A. R., and Wine, P. W.:
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation No. 15 (JPL Publication 06-2),
Jet Propulsion Laboratory, Pasadena, CA, 2006. a
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003. a
Saylor, R. D. and Ford, G. D.:
On the comparison of numerical methods for the integration of kinetic equations in atmospheric chemistry and transport models,
Atmos. Environ.,
29, 2585–2593, https://doi.org/10.1016/1352-2310(95)00187-4, 1995. a, b, c, d
Seyfioglu, R., Odabasi, M., and Cetin, E.:
Wet and dry deposition of formaldehyde in Izmir, Turkey,
Sci. Total Environ.,
366, 809–818, https://doi.org/10.1016/j.scitotenv.2005.08.005, 2006. a
Stockwell, W. R., Saunders, E., Goliff, W. S., and Fitzgerald, R. M.:
A Perspective on the Development of Gas-phase Chemical Mechanisms for Eulerian Air Quality Models,
J. Air Waste Manage. Assoc.,
70, 44–70, https://doi.org/10.1080/10962247.2019.1694605, 2020. a
Turányi, T.:
Sensitivity analysis of complex kinetic systems. Tools and applications,
J. Math. Chem.,
5, 203–248, https://doi.org/10.1007/BF01166355, 1990b.
a
Whitten, G. Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D. T., Carter, W. P., and Yarwood, G.:
A new condensed toluene mechanism for Carbon Bond: CB05-TU,
Atmos. Environ.,
44, 5346–5355, https://doi.org/10.1016/j.atmosenv.2009.12.029, 2010. a, b
Wolfe, G. M., Kaiser, J., Hanisco, T. F., Keutsch, F. N., de Gouw, J. A., Gilman, J. B., Graus, M., Hatch, C. D., Holloway, J., Horowitz, L. W., Lee, B. H., Lerner, B. M., Lopez-Hilifiker, F., Mao, J., Marvin, M. R., Peischl, J., Pollack, I. B., Roberts, J. M., Ryerson, T. B., Thornton, J. A., Veres, P. R., and Warneke, C.: Formaldehyde production from isoprene oxidation across NOx regimes, Atmos. Chem. Phys., 16, 2597–2610, https://doi.org/10.5194/acp-16-2597-2016, 2016. a
Zaveri, R. A. and Peters, L. K.:
A new lumped structure photochemical mechanism for large-scale applications,
J. Geophys. Res.-Atmos.,
104, 30387–30415, https://doi.org/10.1029/1999JD900876, 1999. a
Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T., Zheng, B., Lu, Z., Streets, D. G., Ni, R., Brauer, M., van Donkelaar, A., Martin, R. V., Huo, H., Liu, Z., Pan, D., Kan, H., Yan, Y., Lin, J., He, K., and Guan, D.:
Transboundary health impacts of transported global air pollution and international trade,
Nature,
543, 705–709, https://doi.org/10.1038/nature21712, 2017a. a
Short summary
Gas-phase chemical reaction mechanisms, e.g., CB6 mechanism, are essential parts of the atmospheric transport model. In order to better understand the changes caused by the updates between different versions of the CB6 mechanism, in this study, the behavior of three different CB6 mechanisms in simulating ozone, nitrogen oxides and formaldehyde under two different emission conditions was analyzed using a concentration sensitivity analysis, and the reasons causing the deviations were figured out.
Gas-phase chemical reaction mechanisms, e.g., CB6 mechanism, are essential parts of the...
Altmetrics
Final-revised paper
Preprint