Articles | Volume 21, issue 15
https://doi.org/10.5194/acp-21-11941-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-11941-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comment on “Review of experimental studies of secondary ice production” by Korolev and Leisner (2020)
Vaughan T. J. Phillips
CORRESPONDING AUTHOR
Department of Physical Geography and Ecosystem Science, University of Lund, Lund, Sweden
Jun-Ichi Yano
CNRM, UMR 3589 (CNRS), Météo-France, 31057 Toulouse CEDEX,
France
Akash Deshmukh
Department of Physical Geography and Ecosystem Science, University of Lund, Lund, Sweden
Deepak Waman
Department of Physical Geography and Ecosystem Science, University of Lund, Lund, Sweden
Related authors
Jun-Ichi Yano, Vincent E. Larson, and Vaughan T. J. Phillips
Atmos. Chem. Phys., 25, 9357–9386, https://doi.org/10.5194/acp-25-9357-2025, https://doi.org/10.5194/acp-25-9357-2025, 2025
Short summary
Short summary
The distribution problems appear in atmospheric sciences at almost every corner when describing diverse processes. This paper presents a general formulation for addressing all these problems.
Freddy P. Paul, Martanda Gautam, Deepak Waman, Sachin Patade, Ushnanshu Dutta, Christoffer Pichler, Marcin Jackowicz-Korczynski, and Vaughan Phillips
EGUsphere, https://doi.org/10.5194/egusphere-2024-3800, https://doi.org/10.5194/egusphere-2024-3800, 2025
Preprint archived
Short summary
Short summary
This study shows observations of a key mechanism for initiation of ice particles in clouds with a chamber deployed on the top of a mountain during snowfall in winter. The mechanism involves the fragmentation of snow particles in collisions with denser rimed ice precipitation, namely "graupel" or "hail". The study shows how the fragmentation can be represented in atmospheric models. An improved formulation of the mechanism is proposed in light of our observations with the chamber.
Sachin Patade, Deepak Waman, Akash Deshmukh, Ashok Kumar Gupta, Arti Jadav, Vaughan T. J. Phillips, Aaron Bansemer, Jacob Carlin, and Alexander Ryzhkov
Atmos. Chem. Phys., 22, 12055–12075, https://doi.org/10.5194/acp-22-12055-2022, https://doi.org/10.5194/acp-22-12055-2022, 2022
Short summary
Short summary
This modeling study focuses on the role of multiple groups of primary biological aerosol particles as ice nuclei on cloud properties and precipitation. This was done by implementing a more realistic scheme for biological ice nucleating particles in the aerosol–cloud model. Results show that biological ice nucleating particles have a limited role in altering the ice phase and precipitation in deep convective clouds.
Jonas K. F. Jakobsson, Deepak B. Waman, Vaughan T. J. Phillips, and Thomas Bjerring Kristensen
Atmos. Chem. Phys., 22, 6717–6748, https://doi.org/10.5194/acp-22-6717-2022, https://doi.org/10.5194/acp-22-6717-2022, 2022
Short summary
Short summary
Long-lived cold-layer clouds at subzero temperatures are observed to be remarkably persistent in their generation of ice particles and snow precipitation. There is uncertainty about why this is so. This motivates the present lab study to observe the long-term ice-nucleating ability of aerosol samples from the real troposphere. Time dependence of their ice nucleation is observed to be weak in lab experiments exposing the samples to isothermal conditions for up to about 10 h.
Tommi Bergman, Risto Makkonen, Roland Schrödner, Erik Swietlicki, Vaughan T. J. Phillips, Philippe Le Sager, and Twan van Noije
Geosci. Model Dev., 15, 683–713, https://doi.org/10.5194/gmd-15-683-2022, https://doi.org/10.5194/gmd-15-683-2022, 2022
Short summary
Short summary
We describe in this paper the implementation of a process-based secondary organic aerosol and new particle formation scheme within the chemistry transport model TM5-MP version 1.2. The performance of the model simulations for the year 2010 is evaluated against in situ observations, ground-based remote sensing and satellite retrievals. Overall, the simulated aerosol fields are improved, although in some areas the model shows a decline in performance.
Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly
Atmos. Chem. Phys., 21, 18519–18530, https://doi.org/10.5194/acp-21-18519-2021, https://doi.org/10.5194/acp-21-18519-2021, 2021
Short summary
Short summary
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30 % of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of −4 °C to −12 °C.
Xi Zhao, Xiaohong Liu, Vaughan T. J. Phillips, and Sachin Patade
Atmos. Chem. Phys., 21, 5685–5703, https://doi.org/10.5194/acp-21-5685-2021, https://doi.org/10.5194/acp-21-5685-2021, 2021
Short summary
Short summary
Arctic mixed-phase clouds significantly influence the energy budget of the Arctic. We show that a climate model considering secondary ice production (SIP) can explain the observed cloud ice number concentrations, vertical distribution pattern, and probability density distribution of ice crystal number concentrations. The mixed-phase cloud occurrence and phase partitioning are also improved.
Jun-Ichi Yano, Vincent E. Larson, and Vaughan T. J. Phillips
Atmos. Chem. Phys., 25, 9357–9386, https://doi.org/10.5194/acp-25-9357-2025, https://doi.org/10.5194/acp-25-9357-2025, 2025
Short summary
Short summary
The distribution problems appear in atmospheric sciences at almost every corner when describing diverse processes. This paper presents a general formulation for addressing all these problems.
Freddy P. Paul, Martanda Gautam, Deepak Waman, Sachin Patade, Ushnanshu Dutta, Christoffer Pichler, Marcin Jackowicz-Korczynski, and Vaughan Phillips
EGUsphere, https://doi.org/10.5194/egusphere-2024-3800, https://doi.org/10.5194/egusphere-2024-3800, 2025
Preprint archived
Short summary
Short summary
This study shows observations of a key mechanism for initiation of ice particles in clouds with a chamber deployed on the top of a mountain during snowfall in winter. The mechanism involves the fragmentation of snow particles in collisions with denser rimed ice precipitation, namely "graupel" or "hail". The study shows how the fragmentation can be represented in atmospheric models. An improved formulation of the mechanism is proposed in light of our observations with the chamber.
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024, https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Short summary
A methodology for directly predicting the time evolution of the assumed parameters for the distribution densities based on the Liouville equation, as proposed earlier, is extended to multidimensional cases and to cases in which the systems are constrained by integrals over a part of the variable range. The extended methodology is tested against a convective energy-cycle system as well as the Lorenz strange attractor.
Sachin Patade, Deepak Waman, Akash Deshmukh, Ashok Kumar Gupta, Arti Jadav, Vaughan T. J. Phillips, Aaron Bansemer, Jacob Carlin, and Alexander Ryzhkov
Atmos. Chem. Phys., 22, 12055–12075, https://doi.org/10.5194/acp-22-12055-2022, https://doi.org/10.5194/acp-22-12055-2022, 2022
Short summary
Short summary
This modeling study focuses on the role of multiple groups of primary biological aerosol particles as ice nuclei on cloud properties and precipitation. This was done by implementing a more realistic scheme for biological ice nucleating particles in the aerosol–cloud model. Results show that biological ice nucleating particles have a limited role in altering the ice phase and precipitation in deep convective clouds.
Jonas K. F. Jakobsson, Deepak B. Waman, Vaughan T. J. Phillips, and Thomas Bjerring Kristensen
Atmos. Chem. Phys., 22, 6717–6748, https://doi.org/10.5194/acp-22-6717-2022, https://doi.org/10.5194/acp-22-6717-2022, 2022
Short summary
Short summary
Long-lived cold-layer clouds at subzero temperatures are observed to be remarkably persistent in their generation of ice particles and snow precipitation. There is uncertainty about why this is so. This motivates the present lab study to observe the long-term ice-nucleating ability of aerosol samples from the real troposphere. Time dependence of their ice nucleation is observed to be weak in lab experiments exposing the samples to isothermal conditions for up to about 10 h.
Tommi Bergman, Risto Makkonen, Roland Schrödner, Erik Swietlicki, Vaughan T. J. Phillips, Philippe Le Sager, and Twan van Noije
Geosci. Model Dev., 15, 683–713, https://doi.org/10.5194/gmd-15-683-2022, https://doi.org/10.5194/gmd-15-683-2022, 2022
Short summary
Short summary
We describe in this paper the implementation of a process-based secondary organic aerosol and new particle formation scheme within the chemistry transport model TM5-MP version 1.2. The performance of the model simulations for the year 2010 is evaluated against in situ observations, ground-based remote sensing and satellite retrievals. Overall, the simulated aerosol fields are improved, although in some areas the model shows a decline in performance.
Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly
Atmos. Chem. Phys., 21, 18519–18530, https://doi.org/10.5194/acp-21-18519-2021, https://doi.org/10.5194/acp-21-18519-2021, 2021
Short summary
Short summary
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30 % of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of −4 °C to −12 °C.
Xi Zhao, Xiaohong Liu, Vaughan T. J. Phillips, and Sachin Patade
Atmos. Chem. Phys., 21, 5685–5703, https://doi.org/10.5194/acp-21-5685-2021, https://doi.org/10.5194/acp-21-5685-2021, 2021
Short summary
Short summary
Arctic mixed-phase clouds significantly influence the energy budget of the Arctic. We show that a climate model considering secondary ice production (SIP) can explain the observed cloud ice number concentrations, vertical distribution pattern, and probability density distribution of ice crystal number concentrations. The mixed-phase cloud occurrence and phase partitioning are also improved.
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778, https://doi.org/10.5194/acp-21-4759-2021, https://doi.org/10.5194/acp-21-4759-2021, 2021
Short summary
Short summary
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different configurations of the physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave. To emulate free dynamics in the IFS,
various momentum dissipation terms (
friction) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20° S to 20° N.
Cited articles
Bridges, F. G., Hatzes, A. P., and Lin, D. N. C.: Structure, stability
and evolution of Saturn's rings, Nature, 309, 333–335, 1984.
Dong, Y., Oraltay, R. G., and Hallett, J.: Ice particle generation
during evaporation, Atmos. Res., 32, 45–53, 1994.
Eidevåg, T., Thomson, E. S., Solien S., Casselgren J., and Rasmuson, A.: Collisional damping of spherical ice particles, Powder Technol., 383, 318–327, 2021.
Hatzes, A. P., Bridges, F., and Lin, D. N. C.: Collisional properties of
ice spheres at low impact velocities, Mon. Not. R. Astron. Soc., 231, 1091–1115, 1988
Korolev, A. and Leisner, T.: Review of experimental studies of secondary ice production, Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, 2020.
Oraltay, R. G. and Hallett, J.: Evaporation and melting of ice
crystals: A laboratory study, Atmos. Res., 24, 169–189, 1989.
Phillips, V. T. J., DeMott, P. J., and Andronache, C.: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol, J. Atmos. Sci., 65, 2757–2783, 2008.
Phillips, V. T. J., DeMott, P. J., Andronache, C., Pratt, K. A., Prather, K. A., Subramanian, R., and Twohy, C.: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations, J. Atmos Sci., 70, 378–409, 2013.
Phillips, V. T. J., Yano, J.-I., and Khain, A.: Ice multiplication by
breakup in ice–ice collisions. Part I: Theoretical formulation, J. Atmos. Sci., 74, 1705–1719, 2017a.
Phillips, V. T. J., Yano, J., Formenton, M., Ilotoviz, E., Kanawade, V., Kudzotsa, I., Sun, J., Bansemer, A., Detwiler, A. G., Khain, A., and Tessendorf, S.: Ice multiplication by breakup in ice–ice collisions. Part II:
Numerical Simulations, J. Atmos. Sci., 74, 2789–2811, 2017b.
Phillips, V. T. J., Patade, S., Gutierrez, J., and Bansemer, A.:
Secondary ice production by fragmentation of freezing of drops: formulation
and theory, J. Atmos. Sci., 75, 3031–3070, 2018.
Phillips, V. T. J., Formenton, M., Kanawade, V., Karlsson, L., Patade, S.,
Sun, J., Barthe, C., Pinty, J.-P., Detwiler, A., Lyu, W., Mansell, E. R.,
and Tessendorf, S.: Multiple environmental influences on the lightning
of cold-based continental convection. Part I: description and validation of
model, J. Atmos. Sci., 77, 3999–4024, 2020.
Supulver, K. D., Bridges, F. G., and Lin, D. N. C.: The coefficient of
restitution of ice particles in glancing collisions: Experimental results
for unfrosted surfaces, Icarus, 113, 188–199, 1995.
Takahashi, T.: High ice crystal production in winter cumuli over the
Japan Sea, Geophys. Res. Lett., 20, 451–454, 1993.
Takahashi, T. and Kuhara, K.: Precipitation mechanisms of cumulonimbus
clouds at Pohnpei, Micronesia, J. Meteor. Soc. Japan, 71, 21–31, 1993.
Takahashi, T., Nagao, Y., and Kushiyama, Y.: Possible high ice particle
production during graupel-graupel collisions, J. Atmos. Sci., 52, 4523–4527, 1995.
Vardiman, L.: The generation of secondary ice particles in clouds by
crystal–crystal collision, J. Atmos. Sci., 35, 2168–2180, 1978.
Vidaurre, G. and Hallett, J.: Particle impact and breakup in aircraft
measurement, J. Atmos. Oceanic Technol., 26, 972–983, 2009.
Wall, S., John, W., Wang, H., and Goren, S. L.: Measurements of kinetic
energy loss for particles impacting surfaces, Aerosol Sci. Technol., 12, 926–946, 1990.
Yano, J.-I. and Phillips, V. T. J.: Ice–Ice Collisions: An Ice
Multiplication Process in Atmospheric Clouds, J. Atmos. Sci., 68, 322–333, 2011.
Yano, J.-I. and Phillips, V. T. J.: Explosive ice multiplication
induced by multiplicative–noise fluctuation of mechanical break–up in
ice-ice collisions, J. Atmos. Sci., 73, 4685–4697, 2016.
Yano, J.-I., Phillips, V. T. J., and Kanawade, V.: Explosive ice
multiplication by mechanical break-up in ice–ice collisions: a dynamical
system-based study, Q. J. Roy. Meteor. Soc., 142, 867–879, 2016.
Short summary
For decades, high concentrations of ice observed in precipitating mixed-phase clouds have created an enigma. Such concentrations are higher than can be explained by the action of aerosols or by the spontaneous freezing of most cloud droplets. The controversy has partly persisted due to the lack of laboratory experimentation in ice microphysics, especially regarding fragmentation of ice, a topic reviewed by a recent paper. Our comment attempts to clarify some issues with regards to that review.
For decades, high concentrations of ice observed in precipitating mixed-phase clouds have...
Altmetrics
Final-revised paper
Preprint