Articles | Volume 21, issue 15
https://doi.org/10.5194/acp-21-11669-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-11669-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating radiative forcing efficiency of dust aerosol based on direct satellite observations: case studies over the Sahara and Taklimakan Desert
Lin Tian
Nanjing University of Information Science & Technology, Nanjing,
China
Chinese Academy of Meteorological Sciences, Beijing, China
National Satellite Meteorological
Center, China Meteorological Administration, Beijing, China
Innovation Center for FengYun Meteorological Satellite, China Meteorological Administration, Beijing, China
National Satellite Meteorological
Center, China Meteorological Administration, Beijing, China
Innovation Center for FengYun Meteorological Satellite, China Meteorological Administration, Beijing, China
National Satellite Meteorological
Center, China Meteorological Administration, Beijing, China
Innovation Center for FengYun Meteorological Satellite, China Meteorological Administration, Beijing, China
Department of Atmospheric Sciences, School of Earth Sciences,
Zhejiang University, Hangzhou, China
Related authors
No articles found.
Qixiang Sun, Dabin Ji, Husi Letu, Yongqian Wang, Peng Zhang, Hong Liang, Chong Shi, Shuai Yin, and Jiancheng Shi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-365, https://doi.org/10.5194/essd-2025-365, 2025
Preprint under review for ESSD
Short summary
Short summary
The Tibetan Plateau plays a vital role in Asia’s water cycle, but tracking water vapor in this mountainous region is difficult, especially under cloudy conditions. We developed a new satellite-based method to generate hourly water vapor data at 0.02-degree resolution from 2016 to 2022, now available at https://data.tpdc.ac.cn/en/data/4bb3c256-3cdb-4373-9924-f7ac16ddc717, which improves accuracy and reveals fine-scale moisture transport critical for understanding rainfall and extreme weather.
Xiaozhong Cao, Qiyun Guo, Haowen Luo, Rongkang Yang, Peng Zhang, Jianping Guo, Jincheng Wang, Die Xiao, Jianping Du, Zhongliang Sun, Shijun Liu, Sijie Chen, and Anfan Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2012, https://doi.org/10.5194/egusphere-2025-2012, 2025
Short summary
Short summary
This study aims to introduce in-situ profiling techniques and cost-effective technology for upper-air observation—the Round-trip Drifting Sounding System (RDSS)—which reduces costs relative to intensive sounding and achieves three sounding phases: Ascent-Drift-Descent (ADD). The RDSS not only provides additional data for weather analysis and numerical prediction models but also makes substantial contributions to targeted observations.
Yixiao Fu, Cheng-Zhi Zou, Peng Zhang, Banghai Wu, Shengli Wu, Shi Liu, and Yu Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-608, https://doi.org/10.5194/essd-2024-608, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This study presents a climate data record (CDR) of atmospheric column water vapor and sea surface temperature using over two decades of stable-orbit satellite-based passive microwave imagery observations. The evaluation results show that the CDR has long-term consistency and continuity, and is more accurate than other similar products in climate covariability, suggesting that the CDR is suitable for climate change research and for constraining climate model simulations.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Xinran Xia, Rubin Jiang, Min Min, Shengli Wu, Peng Zhang, and Xiangao Xia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-395, https://doi.org/10.5194/essd-2024-395, 2024
Revised manuscript not accepted
Short summary
Short summary
Based on the MicroWave Radiation Imager aboard FY-3 series satellites, we developed a global terrestrial precipitable water vapor dataset from 2012 to 2020. This dataset overcomes the limitations of infrared observations and provides accurate, all-weather PWV data ,spanning all types of land surface. Researchers are expected to leverage it to explore the role of water vapor in weather patterns, refine precipitation forecasting, and validate climate simulations.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Zhenhao Wu, Yunfei Fu, Peng Zhang, Songyan Gu, and Lin Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-532, https://doi.org/10.5194/essd-2023-532, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We establish a new rain cell precipitation parameter and visible infrared and microwave signal dataset combining with the multi-instrument observation data on the Tropical Rainfall Measuring Mission (TRMM). The purpose of this dataset is to promote the three-dimensional study of rain cell precipitation system, and reveal the spatial and temporal variations of the scale morphology and intensity of the system.
Ying Chen, Ruibo Lei, Xi Zhao, Shengli Wu, Yue Liu, Pei Fan, Qing Ji, Peng Zhang, and Xiaoping Pang
Earth Syst. Sci. Data, 15, 3223–3242, https://doi.org/10.5194/essd-15-3223-2023, https://doi.org/10.5194/essd-15-3223-2023, 2023
Short summary
Short summary
The sea ice concentration product derived from the Microwave Radiation Image sensors on board the FengYun-3 satellites can reasonably and independently identify the seasonal and long-term changes of sea ice, as well as extreme cases of annual maximum and minimum sea ice extent in polar regions. It is comparable with other sea ice concentration products and applied to the studies of climate and marine environment.
Yungang Wang, Liping Fu, Fang Jiang, Xiuqing Hu, Chengbao Liu, Xiaoxin Zhang, Jiawei Li, Zhipeng Ren, Fei He, Lingfeng Sun, Ling Sun, Zhongdong Yang, Peng Zhang, Jingsong Wang, and Tian Mao
Atmos. Meas. Tech., 15, 1577–1586, https://doi.org/10.5194/amt-15-1577-2022, https://doi.org/10.5194/amt-15-1577-2022, 2022
Short summary
Short summary
Far-ultraviolet (FUV) airglow radiation is particularly well suited for space-based remote sensing. The Ionospheric Photometer (IPM) instrument carried aboard the Feng Yun 3-D satellite measures the spectral radiance of the Earth FUV airglow. IPM is a tiny, highly sensitive, and robust remote sensing instrument. Initial results demonstrate that the performance of IPM meets the designed requirement and therefore can be used to study the thermosphere and ionosphere in the future.
Liang Xu, Xiaohuan Liu, Huiwang Gao, Xiaohong Yao, Daizhou Zhang, Lei Bi, Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Qi Yuan, and Weijun Li
Atmos. Chem. Phys., 21, 17715–17726, https://doi.org/10.5194/acp-21-17715-2021, https://doi.org/10.5194/acp-21-17715-2021, 2021
Short summary
Short summary
We quantified different types of marine aerosols and explored the Cl depletion of sea salt aerosol (SSA) in the eastern China seas and the northwestern Pacific Ocean. We found that anthropogenic acidic gases in the troposphere were transported longer distances compared to the anthropogenic aerosols and could significantly impact remote marine aerosols. Meanwhile, variations of chloride depletion in SSA can serve as a potential indicator for anthropogenic gaseous pollutants in remote marine air.
Cited articles
Anderson, T. L., Charlson, R. J., Bellouin, N., Boucher, O., Chin, M.,
Christopher, S. A., Haywood, J., Kaufman, Y. J., Kinne, S., Ogren, J. A.,
Remer, L. A., Takemura, T., Tanré, D., Torres, O., Trepte, C. R.,
Wielicki, B. A., Winker, D. M., and Yu, H.: An “A-Train” Strategy for
Quantifying Direct Climate Forcing by Anthropogenic Aerosols,
B. Am. Meteorol. Soc., 86, 1795–1810, https://doi.org/10.1175/bams-86-12-1795,
2005.
Bi, J., Shi, J., Xie, Y., Liu, Y., Takamura, T., and Khatri, P.: Dust
Aerosol Characteristics and Shortwave Radiative Impact at a Gobi Desert of
Northwest China during the Spring of 2012,
J. Meteorol. Soc. Jpn. Ser. II, 92A, 33–56, https://doi.org/10.2151/jmsj.2014-A03, 2014.
Bi, L., Ding, S., Zong, R., and Yi, B.: Examining Asian dust refractive
indices for brightness temperature simulations in the 650–1135 cm−1
spectral range, J. Quant. Spectrosc. Ra.,
247, 106945, https://doi.org/10.1016/j.jqsrt.2020.106945, 2020.
Borghese, F., Denti, P., Saija, R., and Iatì, M. A.: Optical trapping
of nonspherical particles in the T-matrix formalism, Opt. Express, 15,
11984–11998, https://doi.org/10.1364/OE.15.011984, 2007.
Che, H., Zhang, X., Alfraro, S., Chatenet, B., Gomes, L., and Zhao, J.:
Aerosol optical properties and its radiative forcing over Yulin, China in
2001 and 2002, Adv. Atmos. Sci., 26, 564–576,
https://doi.org/10.1007/s00376-009-0564-4, 2009.
Che, H., Wang, Y., Sun, J., Zhang, X., Zhang, X., and Guo, J.: Variation of
Aerosol Optical Properties over Taklimakan Desert of China,
Aerosol. Air Qual. Res., 13, 777–785, https://doi.org/10.4209/aaqr.2012.07.0200, 2012.
Chen, L., Shi, G., Qin, S., Yang, S., and Zhang, P.: Direct radiative
forcing of anthropogenic aerosols over oceans from satellite observations,
Adv. Atmos. Sci., 28, 973–984, https://doi.org/10.1007/s00376-010-9210-4,
2011.
Chen, S., Zhao, C., Qian, Y., Leung, L. R., Huang, J., Huang, Z., Bi, J., Zhang, W., Shi, J., Yang, L., Li, D., and Li, J.: Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem, Aeolian Res., 15, 15–30, https://doi.org/10.1016/j.aeolia.2014.02.001, 2014.
Christopher, S. A., Chou, J., Zhang, J., Li, X., Berendes, T. A., and Welch,
R. M.: Shortwave direct radiative forcing of biomass burning aerosols
estimated using VIRS and CERES data, Geophys. Res. Lett., 27,
2197–2200, https://doi.org/10.1029/1999gl010923, 2000.
Colarco, P. R., Nowottnick, E. P., Randles, C. A., Yi, B., Yang, P., Kim,
K.-M., Smith, J. A., and Bardeen, C. G.: Impact of radiatively interactive
dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle
shape and refractive index, J. Geophys. Res.-Atmos.,
119, 753–786, https://doi.org/10.1002/2013jd020046, 2014.
Di Biagio, C., di Sarra, A., Eriksen, P., Ascanius, S. E., Muscari, G., and
Holben, B.: Effect of surface albedo, water vapour, and atmospheric aerosols
on the cloud-free shortwave radiative budget in the Arctic, Clim.
Dynam., 39, 953–969, https://doi.org/10.1007/s00382-011-1280-1, 2012.
Di Biagio, C., Boucher, H., Caquineau, S., Chevaillier, S., Cuesta, J., and Formenti, P.: Variability of the infrared complex refractive index of African mineral dust: experimental estimation and implications for radiative transfer and satellite remote sensing, Atmos. Chem. Phys., 14, 11093–11116, https://doi.org/10.5194/acp-14-11093-2014, 2014a.
Di Biagio, C., Formenti, P., Styler, S. A., Pangui, E., and Doussin, J.-F.:
Laboratory chamber measurements of the longwave extinction spectra and
complex refractive indices of African and Asian mineral dust, Geophys. Res. Lett., 41, 6289–6297, https://doi.org/10.1002/2014GL060213, 2014b.
Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E., Nowak, S., Caquineau, S., Andreae, M. O., Kandler, K., Saeed, T., Piketh, S., Seibert, D., Williams, E., and Doussin, J.-F.: Global scale variability of the mineral dust long-wave refractive index: a new dataset of in situ measurements for climate modeling and remote sensing, Atmos. Chem. Phys., 17, 1901–1929, https://doi.org/10.5194/acp-17-1901-2017, 2017.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval
of aerosol optical properties from Sun and sky radiance measurements,
J. Geophys. Res.-Atmos., 105, 20673–20696, https://doi.org/10.1029/2000jd900282, 2000.
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang,
P., Eck, T. F., Volten, H., Muñoz, O., Veihelmann, B., van der Zande, W.
J., Leon, J.-F., Sorokin, M., and Slutsker, I.: Application of spheroid
models to account for aerosol particle nonsphericity in remote sensing of
desert dust, J. Geophys. Res.-Atmos., 111, D11208, https://doi.org/10.1029/2005jd006619, 2006.
Gao, Y. and Anderson, J. R.: Characteristics of Chinese aerosols determined
by individual-particle analysis, J. Geophys. Res.-Atmos., 106, 18037–18045, https://doi.org/10.1029/2000jd900725, 2001.
García, O. E., Díaz, A. M., Expósito, F. J., Díaz, J. P.,
Dubovik, O., Dubuisson, P., Roger, J.-C., Eck, T. F., Sinyuk, A., Derimian,
Y., Dutton, E. G., Schafer, J. S., Holben, B. N., and García, C. A.:
Validation of AERONET estimates of atmospheric solar fluxes and aerosol
radiative forcing by ground-based broadband measurements, J. Geophys. Res.-Atmos., 113, D21207, https://doi.org/10.1029/2008jd010211, 2008.
García, O. E., Díaz, J. P., Expósito, F. J., Díaz, A. M., Dubovik, O., Derimian, Y., Dubuisson, P., and Roger, J.-C.: Shortwave radiative forcing and efficiency of key aerosol types using AERONET data, Atmos. Chem. Phys., 12, 5129–5145, https://doi.org/10.5194/acp-12-5129-2012, 2012.
Garrett, T. J. and Zhao, C.: Increased Arctic cloud longwave emissivity
associated with pollution from mid-latitudes, Nature, 440, 787–789, https://doi.org/10.1038/nature04636, 2006.
Gouesbet, G. and Gréhan, G.: Generalized Lorenz-Mie Theories, Springer Berlin Heidelberg, 2011.
Guirado, C., Cuevas, E., Cachorro, V. E., Toledano, C., Alonso-Pérez, S., Bustos, J. J., Basart, S., Romero, P. M., Camino, C., Mimouni, M., Zeudmi, L., Goloub, P., Baldasano, J. M., and de Frutos, A. M.: Aerosol characterization at the Saharan AERONET site Tamanrasset, Atmos. Chem. Phys., 14, 11753–11773, https://doi.org/10.5194/acp-14-11753-2014, 2014.
Holben, B.: Aerosol robotic Network (AERONET) Homepage,NASA, available at: http://aeronet.gsfc.nasa.gov/, last access: 10 October 2020.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A Federated Instrument Network and
Data Archive for Aerosol Characterization, Remote Sens. Environ.,
66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Hovenier, J. W.: Preface Workshop on Light Scattering by Nonspherical Particles, J. Quant. Spectrosc. Ra., 55, v, https://doi.org/10.1016/s0022-4073(96)90003-5, 1996.
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R.: Aerosol properties
over bright-reflecting source regions,
IEEE T. Geosci. Remote, 42, 557–569, 2004.
Huang, J., Fu, Q., Su, J., Tang, Q., Minnis, P., Hu, Y., Yi, Y., and Zhao, Q.: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints, Atmos. Chem. Phys., 9, 4011–4021, https://doi.org/10.5194/acp-9-4011-2009, 2009.
Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust
aerosols over East Asian arid and semiarid regions, J. Geophys. Res.-Atmos., 119, 11398–311416, https://doi.org/10.1002/2014jd021796, 2014.
Huneeus, N., Chevallier, F., and Boucher, O.: Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model, Atmos. Chem. Phys., 12, 4585–4606, https://doi.org/10.5194/acp-12-4585-2012, 2012.
Iftikhar, M., Alam, K., Sorooshian, A., Syed, W. A., Bibi, S., and Bibi, H.:
Contrasting aerosol optical and radiative properties between dust and urban
haze episodes in megacities of Pakistan, Atmos. Environ., 173,
157–172, https://doi.org/10.1016/j.atmosenv.2017.11.011, 2018.
Jin, Y., Schaaf, C. B., Woodcock, C. E., Gao, F., Li, X., Strahler, A. H.,
Lucht, W., and Liang, S.: Consistency of MODIS surface bidirectional
reflectance distribution function and albedo retrievals: 2. Validation,
J. Geophys. Res.-Atmos., 108, 4159, https://doi.org/10.1029/2002jd002804,
2003.
Jose, S., Gharai, B., Rao, P. V. N., and Dutt, C. B. S.: Satellite-based shortwave aerosol radiative forcing of dust storm over the Arabian Sea, Atmos. Sci. Lett., 17, 43–50, https://doi.org/10.1002/asl.597, 2016.
Kalashnikova, O. V. and Sokolik, I. N.: Modeling the radiative properties
of nonspherical soil-derived mineral aerosols, J. Quant. Spectrosc. Ra., 87, 137–166,
https://doi.org/10.1016/j.jqsrt.2003.12.026, 2004.
Kumar, S., Kumar, S., Kaskaoutis, D. G., Singh, R. P., Singh, R. K., Mishra, A. K., Srivastava, M. K., and Singh, A. K.: Meteorological, atmospheric and climatic perturbations during major dust storms over Indo-Gangetic Basin, Aeolian Res., 17, 15–31, https://doi.org/10.1016/j.aeolia.2015.01.006, 2015.
Lewis, P. and Barnsley, M.: Influence of the sky radiance distribution on
various formulations of the Earth surface albedo, Proceedings of the Conference on Physical Measurements and Signatures in Remote Sensing, England, 1994.
Li, F., Vogelmann, A. M., and Ramanathan, V.: Saharan Dust Aerosol Radiative
Forcing Measured from Space, J. Climate, 17, 2558–2571, https://doi.org/10.1175/1520-0442(2004)017<2558:SDARFM>2.0.CO;2, 2004.
Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., and Wendisch, M.: Aerosol solar radiative forcing near the Taklimakan Desert based on radiative transfer and regional meteorological simulations during the Dust Aerosol Observation-Kashi campaign, Atmos. Chem. Phys., 20, 10845–10864, https://doi.org/10.5194/acp-20-10845-2020, 2020.
Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu,
X. F., Zhao, W., Tian, Q. J., Deng, R. R., Su, X. L., Huang, B., Qiao, Y.
L., Cui, W. Y., Hu, Y., Gong, C. L., Wang, Y. Q., Wang, X. F., Wang, J. P.,
Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprehensive Study of
Optical, Physical, Chemical, and Radiative Properties of Total Columnar
Atmospheric Aerosols over China: An Overview of Sun–Sky Radiometer
Observation Network (SONET) Measurements, B. Am. Meteorol. Soc., 99, 739–755, https://doi.org/10.1175/bams-d-17-0133.1, 2018.
Liang, S., Fang, H., Chen, M., Shuey, C. J., Walthall, C., Daughtry, C.,
Morisette, J., Schaaf, C., and Strahler, A.: Validating MODIS land surface
reflectance and albedo products: methods and preliminary results, Remote Sens. Environ., 83, 149–162,
https://doi.org/10.1016/S0034-4257(02)00092-5, 2002.
Liu, J., Schaaf, C., Strahler, A., Jiao, Z., Shuai, Y., Zhang, Q., Roman,
M., Augustine, J. A., and Dutton, E. G.: Validation of Moderate Resolution
Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of
albedo on solar zenith angle, J. Geophys. Res.-Atmos.,
114, D01106, https://doi.org/10.1029/2008jd009969, 2009.
Loeb, N.: CERES data Products – CERES, NASA, available at: https://ceres.larc.nasa.gov/data/, last access: 24 April 2020.
Mbourou, G. N. T., Bertrand, J. J., and Nicholson, S. E.: The Diurnal and
Seasonal Cycles of Wind-Borne Dust over Africa North of the Equator,
J. Appl. Meteorol., 36, 868–882, https://doi.org/10.1175/1520-0450(1997)036<0868:Tdasco>2.0.Co;2, 1997.
McComiskey, A., Ricchiazzi, P., Ogren, J., and Dutton, E.: SGPGET: AN SBDART
Module for Aerosol Radiative Transfer, Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, 14–18 March, 2005.
Mikami, M., Shi, G. Y., Uno, I., Yabuki, S., Iwasaka, Y., Yasui, M., Aoki,
T., Tanaka, T. Y., Kurosaki, Y., Masuda, K., Uchiyama, A., Matsuki, A.,
Sakai, T., Takemi, T., Nakawo, M., Seino, N., Ishizuka, M., Satake, S.,
Fujita, K., Hara, Y., Kai, K., Kanayama, S., Hayashi, M., Du, M., Kanai, Y.,
Yamada, Y., Zhang, X. Y., Shen, Z., Zhou, H., Abe, O., Nagai, T., Tsutsumi,
Y., Chiba, M., and Suzuki, J.: Aeolian dust experiment on climate impact: An
overview of Japan–China joint project ADEC, Global Planet. Change,
52, 142–172, https://doi.org/10.1016/j.gloplacha.2006.03.001, 2006.
Miller, R., Knippertz, P., Pérez García-Pando, C., Perlwitz, J.,
and Tegen, I.: Impact of Dust Radiative Forcing upon Climate, Mineral Dust, 327–357, https://doi.org/10.1007/978-94-017-8978-3_13, 327–357,
2014.
Mishchenko, M. I. and Travis, L. D.: Capabilities and limitations of a
current FORTRAN implementation of the T-matrix method for randomly oriented,
rotationally symmetric scatterers, J. Quant. Spectrosc. Ra., 60, 309–324,
https://doi.org/10.1016/S0022-4073(98)00008-9, 1998.
Mishchenko, M. I. and Travis, L. D.: Gustav Mie and the Evolving Discipline
of Electromagnetic Scattering by Particles, B. Am. Meteorol. Soc., 89, 1853–1862, https://doi.org/10.1175/2008bams2632.1, 2008.
Mishchenko, M. I., Travis, L. D., and Mackowski, D. W.: T-matrix
computations of light scattering by nonspherical particles: A review,
J. Quant. Spectrosc. Ra., 55, 535–575,
https://doi.org/10.1016/0022-4073(96)00002-7, 1996.
Nakajima, T., Tanaka, M., Yamano, M., Shiobara, M., Arao, K., and Nakanishi,
Y.: Aerosol Optical Characteristics in the Yellow Sand Events Observed in
May, 1982 at Nagasaki-Part II Models, J. Meteorol. Soc. Jpn. Ser. II, 67, 279–291, https://doi.org/10.2151/jmsj1965.67.2_279,
1989.
Okada, K., Heintzenberg, J., Kai, K., and Qin, Y.: Shape of atmospheric
mineral particles collected in three Chinese arid-regions, Geophys. Res. Lett., 28, 3123–3126, https://doi.org/10.1029/2000gl012798, 2001.
Qie, L., Li, L., Li, K., Li, D., and Xu, H.: Retrieval of aerosol optical
properties from ground-based remote sensing measurements: Aerosol asymmetry
factor and single scattering albedo, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1421–1426, https://doi.org/10.5194/isprs-archives-XLII-3-1421-2018, 2018.
Ramanathan, V., Cess, R., Harrison, E., Minnis, P., Barkstrom, B., Ahmad,
E., and Hartmann, D.: Cloud-Radiative Forcing and Climate: Results from The
Earth Radiation Budget Experiment, Science, 243, 57–63, https://doi.org/10.1126/science.243.4887.57, 1989.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R. R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T.
F., Vermote, E., and Holben, B. N.: The MODIS Aerosol Algorithm, Products,
and Validation, J. Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1, 2005.
Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A Research and
Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's
Atmosphere, B. Am. Meteorol. Soc., 79, 2101–2114, https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2, 1998a.
Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A Research and
Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's
Atmosphere, B. Am. Meteorol. Soc., 79, 2101, https://doi.org/10.1175/1520-0477(1998)079<2101:Sarats>2.0.Co;2, 1998b.
Román, M. O., Schaaf, C. B., Lewis, P., Gao, F., Anderson, G. P.,
Privette, J. L., Strahler, A. H., Woodcock, C. E., and Barnsley, M.:
Assessing the coupling between surface albedo derived from MODIS and the
fraction of diffuse skylight over spatially-characterized landscapes, Remote Sens. Environ., 114, 738–760,
https://doi.org/10.1016/j.rse.2009.11.014, 2010.
Satheesh, S. K.: Letter to the Editor, Aerosol radiative forcing over land: effect of surface and cloud reflection, Ann. Geophys., 20, 2105–2109, https://doi.org/10.5194/angeo-20-2105-2002, 2002.
Satheesh, S. K. and Ramanathan, V.: Large differences in tropical aerosol
forcing at the top of the atmosphere and Earth's surface, Nature, 405,
60–63, https://doi.org/10.1038/35011039, 2000.
Satheesh, S. K. and Srinivasan, J.: A Method to Estimate Aerosol Radiative
Forcing from Spectral Optical Depths, J. Atmos. Sci., 63,
1082, https://doi.org/10.1175/jas3663.1, 2006.
Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and
Jeong, M.-J.: MODIS Collection 6 aerosol products: Comparison between Aqua's
e-Deep Blue, Dark Target, and “merged” data sets, and usage
recommendations, J. Geophys. Res.-Atmos., 119,
13965–913989, https://doi.org/10.1002/2014jd022453, 2014.
Schaaf, C., Martonchik, J., Pinty, B., Govaerts, Y., Gao, F., Lattanzio, A.,
Liu, J., Strahler, A., and Taberner, M.: Retrieval of Surface Albedo from
Satellite Sensors, in: Advances in Land Remote Sensing: System, Modeling,
Inversion and Application, edited by: Liang, S., Springer Netherlands,
Dordrecht, 219–243, 2008.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T.,
Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley,
M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C.,
d'Entremont, R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First
operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135–148,
https://doi.org/10.1016/S0034-4257(02)00091-3, 2002a.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T.,
Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley,
M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C.,
d'Entremont, R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First
operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135, https://doi.org/10.1016/s0034-4257(02)00091-3, 2002b.
Schaaf, C. B., Liu, J., Gao, F., and Strahler, A. H.: Aqua and Terra MODIS
Albedo and Reflectance Anisotropy Products, in: Land Remote Sensing and
Global Environmental Change: NASA's Earth Observing System and the Science
of ASTER and MODIS, edited by: Ramachandran, B., Justice, C. O., and Abrams,
M. J., Springer New York, New York, NY, 549–561, 2011.
Shi, G., Wang, H., Wang, B., Li, W., Gong, S., Zhao, T., and Aoki, T.:
Sensitivity Experiments on the Effects of Optical Properties of Dust
Aerosols on Their Radiative Forcing under Clear Sky Condition, J. Meteorol. Soc. Jpn., 83A, 333–346, https://doi.org/10.2151/jmsj.83A.333, 2005.
Slingo, A., Ackerman, T. P., Allan, R. P., Kassianov, E. I., McFarlane, S.
A., Robinson, G. J., Barnard, J. C., Miller, M. A., Harries, J. E., Russell,
J. E., and Dewitte, S.: Observations of the impact of a major Saharan dust
storm on the atmospheric radiation balance, Geophys. Res. Lett.,
33, https://doi.org/10.1029/2006gl027869, 2006.
Tanré, D., Kaufman, Y., Holben, B., Chatenet, B., Karnieli, A., Lavenu,
F., Blarel, L., Dubovik, O., Remer, L., and Smirnov, A.: Climatology of dust
aerosol size distribution and optical properties derived from remotely
sensed data in the solar spectrum, J. Geophys. Res., 106, 18205–18217, https://doi.org/10.1029/2000JD900663, 2001.
Tegen, I., Bierwirth, E., Heinold, B., Helmert, J., and Wendisch, M.: Effect
of measured surface albedo on modeled Saharan dust solar radiative forcing,
J. Geophys. Res.-Atmos., 115, D24312, https://doi.org/10.1029/2009jd013764,
2010.
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Feichter, J., Fillmore, D., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I. S. A., Iversen, T., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, M. S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment, Atmos. Chem. Phys., 7, 4489–4501, https://doi.org/10.5194/acp-7-4489-2007, 2007.
Tian, L., Zhang, P., and Chen, L.: Estimation of the Dust Aerosol Shortwave
Direct Forcing Over Land Based on an Equi-albedo Method From Satellite
Measurements, J. Geophys. Res.-Atmos., 124, 8793–8807, https://doi.org/10.1029/2019JD030974, 2019.
Torbert, C.: Data pool, LP DAAC – Data Pool, USGS, available at: https://lpdaac.usgs.gov/tools/data-pool/, last access: 10 October 2020.
Valenzuela, A., Olmo, F. J., Lyamani, H., Antón, M., Quirantes, A., and Alados-Arboledas, L.: Aerosol radiative forcing during African desert dust events (2005–2010) over Southeastern Spain, Atmos. Chem. Phys., 12, 10331–10351, https://doi.org/10.5194/acp-12-10331-2012, 2012.
Wang, Z., Zhang, H., Jing, X., and Wei, X.: Effect of non-spherical dust
aerosol on its direct radiative forcing, Atmos. Res., 120–121,
112–126, https://doi.org/10.1016/j.atmosres.2012.08.006, 2013.
Wielicki, B. A., Barkstrom, B. R., Baum, B. A., Charlock, T. P., Green, R.
N., Kratz, D. P., Lee, R. B., Minnis, P., Smith, G. L., Takmeng, W., Young,
D. F., Cess, R. D., Coakley, J. A., Crommelynck, D. A. H., Donner, L.,
Kandel, R., King, M. D., Miller, A. J., Ramanathan, V., Randall, D. A.,
Stowe, L. L., and Welch, R. M.: Clouds and the Earth's Radiant Energy System
(CERES): algorithm overview, IEEE T. Geosci. Remote, 36, 1127–1141, 1998.
Wolfe, R.: LAADS DAAC, NASA, available at: https://ladsweb.modaps.eosdis.nasa.gov/, last access: 10 October 2020.
Xia, X. and Zong, X.: Shortwave versus longwave direct radiative forcing by
Taklimakan dust aerosols, Geophys. Res. Lett., 36, L07803, https://doi.org/10.1029/2009gl037237, 2009.
Zhang, J., Christopher, S. A., Remer, L. A., and Kaufman, Y. J.: Shortwave
aerosol radiative forcing over cloud-free oceans from Terra: 2. Seasonal and
global distributions, J. Geophys. Res.-Atmos., 110,
D10S24, https://doi.org/10.1029/2004JD005009, 2005.
Zhang, P., Lu, N., Hu, X., and Dong, C.: Identification and
physical retrieval of dust storm using three MODIS thermal IR channels,
Global Planet. Change, 52, 197–206,
https://doi.org/10.1016/j.gloplacha.2006.02.014, 2006.
Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J. D., and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments, Atmos. Chem. Phys., 10, 8821–8838, https://doi.org/10.5194/acp-10-8821-2010, 2010.
Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J. F., Zaveri, R. A., and Huang, J.: Uncertainty in modeling dust mass balance and radiative forcing from size parameterization, Atmos. Chem. Phys., 13, 10733–10753, https://doi.org/10.5194/acp-13-10733-2013, 2013.
Short summary
The result shows dust aerosols from the Taklimakan Desert have higher aerosol scattering during dust storm cases of this paper, and this caused higher negative direct radiative forcing efficiency (DRFEdust) than aerosols from the Sahara.
The microphysical properties and particle shapes of dust aerosol significantly influence DRFEdust. The satellite-based equi-albedo method has a unique advantage in DRFEdust estimation: it could validate the results derived from the numerical model directly.
The result shows dust aerosols from the Taklimakan Desert have higher aerosol scattering during...
Altmetrics
Final-revised paper
Preprint