Articles | Volume 20, issue 16
https://doi.org/10.5194/acp-20-9737-2020
https://doi.org/10.5194/acp-20-9737-2020
Research article
 | Highlight paper
 | 
20 Aug 2020
Research article | Highlight paper |  | 20 Aug 2020

Inconsistencies between chemistry–climate models and observed lower stratospheric ozone trends since 1998

William T. Ball, Gabriel Chiodo, Marta Abalos, Justin Alsing, and Andrea Stenke

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by William Ball on behalf of the Authors (08 Jun 2020)  Author's response   Manuscript 
ED: Publish subject to technical corrections (01 Jul 2020) by Farahnaz Khosrawi
AR by William Ball on behalf of the Authors (02 Jul 2020)  Author's response   Manuscript 
Download
Short summary
Recent lower stratospheric ozone decreases remain unexplained. We show that chemistry–climate models are not generally able to reproduce mid-latitude ozone and water vapour changes. Our analysis of observations provides evidence that climate change may be responsible for the ozone trends. While model projections suggest that extratropical ozone should recover by 2100, our study raises questions about their efficacy in simulating lower stratospheric changes in this region.
Altmetrics
Final-revised paper
Preprint