Articles | Volume 20, issue 14
https://doi.org/10.5194/acp-20-8709-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-8709-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of age of air trends to the derivation method for non-linear increasing inert SF6
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
Meteorological Institute Munich, Ludwig Maximilians University of Munich, Munich, Germany
Hella Garny
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
Meteorological Institute Munich, Ludwig Maximilians University of Munich, Munich, Germany
Andreas Engel
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
Harald Bönisch
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Roland Eichinger
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
Meteorological Institute Munich, Ludwig Maximilians University of Munich, Munich, Germany
Viewed
Total article views: 2,691 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Nov 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,921 | 715 | 55 | 2,691 | 59 | 46 |
- HTML: 1,921
- PDF: 715
- XML: 55
- Total: 2,691
- BibTeX: 59
- EndNote: 46
Total article views: 2,063 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Jul 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,636 | 382 | 45 | 2,063 | 45 | 37 |
- HTML: 1,636
- PDF: 382
- XML: 45
- Total: 2,063
- BibTeX: 45
- EndNote: 37
Total article views: 628 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Nov 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
285 | 333 | 10 | 628 | 14 | 9 |
- HTML: 285
- PDF: 333
- XML: 10
- Total: 628
- BibTeX: 14
- EndNote: 9
Viewed (geographical distribution)
Total article views: 2,691 (including HTML, PDF, and XML)
Thereof 2,586 with geography defined
and 105 with unknown origin.
Total article views: 2,063 (including HTML, PDF, and XML)
Thereof 2,051 with geography defined
and 12 with unknown origin.
Total article views: 628 (including HTML, PDF, and XML)
Thereof 535 with geography defined
and 93 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
19 citations as recorded by crossref.
- Evaluation of the N2O Rate of Change to Understand the Stratospheric Brewer‐Dobson Circulation in a Chemistry‐Climate Model D. Minganti et al. 10.1029/2021JD036390
- Asymmetry and pathways of inter-hemispheric transport in the upper troposphere and lower stratosphere X. Yan et al. 10.5194/acp-21-6627-2021
- Climatological impact of the Brewer–Dobson circulation on the N<sub>2</sub>O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses D. Minganti et al. 10.5194/acp-20-12609-2020
- Correction of stratospheric age of air (AoA) derived from sulfur hexafluoride (SF6) for the effect of chemical sinks H. Garny et al. 10.5194/acp-24-4193-2024
- The impact of sulfur hexafluoride (SF<sub>6</sub>) sinks on age of air climatologies and trends S. Loeffel et al. 10.5194/acp-22-1175-2022
- Secular change in atmospheric Ar∕N<sub>2</sub> and its implications for ocean heat uptake and Brewer–Dobson circulation S. Ishidoya et al. 10.5194/acp-21-1357-2021
- The middle atmospheric meridional circulation for 2002–2012 derived from MIPAS observations T. von Clarmann et al. 10.5194/acp-21-8823-2021
- Observed changes in stratospheric circulation: decreasing lifetime of N2O, 2005–2021 M. Prather et al. 10.5194/acp-23-843-2023
- Stratospheric Fluorine as a Tracer of Circulation Changes: Comparison Between Infrared Remote‐Sensing Observations and Simulations With Five Modern Reanalyses M. Prignon et al. 10.1029/2021JD034995
- Age of air from in situ trace gas measurements: insights from a new technique E. Ray et al. 10.5194/acp-24-12425-2024
- Impact of Lagrangian transport on lower-stratospheric transport timescales in a climate model E. Charlesworth et al. 10.5194/acp-20-15227-2020
- The Brewer–Dobson circulation in CMIP6 M. Abalos et al. 10.5194/acp-21-13571-2021
- Hemispheric asymmetries in recent changes in the stratospheric circulation F. Ploeger & H. Garny 10.5194/acp-22-5559-2022
- How can Brewer–Dobson circulation trends be estimated from changes in stratospheric water vapour and methane? L. Poshyvailo-Strube et al. 10.5194/acp-22-9895-2022
- Stratospheric Adiabatic Mixing Rates Derived From the Vertical Gradient of Age of Air M. Linz et al. 10.1029/2021JD035199
- Mean age from observations in the lowermost stratosphere: an improved method and interhemispheric differences T. Wagenhäuser et al. 10.5194/acp-23-3887-2023
- Application of a Nudged General Circulation Model to the Interpretation of the Mean Age of Air Derived from Stratospheric Samples in the Tropics T. NGUYEN et al. 10.2151/jmsj.2021-056
- The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis F. Ploeger et al. 10.5194/acp-21-8393-2021
- A convolution of observational and model data to estimate age of air spectra in the northern hemispheric lower stratosphere M. Hauck et al. 10.5194/acp-20-8763-2020
18 citations as recorded by crossref.
- Evaluation of the N2O Rate of Change to Understand the Stratospheric Brewer‐Dobson Circulation in a Chemistry‐Climate Model D. Minganti et al. 10.1029/2021JD036390
- Asymmetry and pathways of inter-hemispheric transport in the upper troposphere and lower stratosphere X. Yan et al. 10.5194/acp-21-6627-2021
- Climatological impact of the Brewer–Dobson circulation on the N<sub>2</sub>O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses D. Minganti et al. 10.5194/acp-20-12609-2020
- Correction of stratospheric age of air (AoA) derived from sulfur hexafluoride (SF6) for the effect of chemical sinks H. Garny et al. 10.5194/acp-24-4193-2024
- The impact of sulfur hexafluoride (SF<sub>6</sub>) sinks on age of air climatologies and trends S. Loeffel et al. 10.5194/acp-22-1175-2022
- Secular change in atmospheric Ar∕N<sub>2</sub> and its implications for ocean heat uptake and Brewer–Dobson circulation S. Ishidoya et al. 10.5194/acp-21-1357-2021
- The middle atmospheric meridional circulation for 2002–2012 derived from MIPAS observations T. von Clarmann et al. 10.5194/acp-21-8823-2021
- Observed changes in stratospheric circulation: decreasing lifetime of N2O, 2005–2021 M. Prather et al. 10.5194/acp-23-843-2023
- Stratospheric Fluorine as a Tracer of Circulation Changes: Comparison Between Infrared Remote‐Sensing Observations and Simulations With Five Modern Reanalyses M. Prignon et al. 10.1029/2021JD034995
- Age of air from in situ trace gas measurements: insights from a new technique E. Ray et al. 10.5194/acp-24-12425-2024
- Impact of Lagrangian transport on lower-stratospheric transport timescales in a climate model E. Charlesworth et al. 10.5194/acp-20-15227-2020
- The Brewer–Dobson circulation in CMIP6 M. Abalos et al. 10.5194/acp-21-13571-2021
- Hemispheric asymmetries in recent changes in the stratospheric circulation F. Ploeger & H. Garny 10.5194/acp-22-5559-2022
- How can Brewer–Dobson circulation trends be estimated from changes in stratospheric water vapour and methane? L. Poshyvailo-Strube et al. 10.5194/acp-22-9895-2022
- Stratospheric Adiabatic Mixing Rates Derived From the Vertical Gradient of Age of Air M. Linz et al. 10.1029/2021JD035199
- Mean age from observations in the lowermost stratosphere: an improved method and interhemispheric differences T. Wagenhäuser et al. 10.5194/acp-23-3887-2023
- Application of a Nudged General Circulation Model to the Interpretation of the Mean Age of Air Derived from Stratospheric Samples in the Tropics T. NGUYEN et al. 10.2151/jmsj.2021-056
- The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis F. Ploeger et al. 10.5194/acp-21-8393-2021
Latest update: 23 Nov 2024
Short summary
We test two methods to derive age of air as a diagnostic of the Brewer–Dobson circulation from non-linear increasing trace gases such as SF6 using a chemistry-climate model and observations. Both the model and the observations show systematic variation of the age of air trend dependent on the chosen assumptions that are required when deriving age of air from measurements. This provides insight into the differences in age of air trends of observations and models.
We test two methods to derive age of air as a diagnostic of the Brewer–Dobson circulation from...
Altmetrics
Final-revised paper
Preprint