Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 20, issue 13
Atmos. Chem. Phys., 20, 8251–8266, 2020
https://doi.org/10.5194/acp-20-8251-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 8251–8266, 2020
https://doi.org/10.5194/acp-20-8251-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Jul 2020

Research article | 16 Jul 2020

Response of surface shortwave cloud radiative effect to greenhouse gases and aerosols and its impact on summer maximum temperature

Tao Tang et al.

Viewed

Total article views: 830 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
641 168 21 830 52 11 13
  • HTML: 641
  • PDF: 168
  • XML: 21
  • Total: 830
  • Supplement: 52
  • BibTeX: 11
  • EndNote: 13
Views and downloads (calculated since 27 Jan 2020)
Cumulative views and downloads (calculated since 27 Jan 2020)

Viewed (geographical distribution)

Total article views: 574 (including HTML, PDF, and XML) Thereof 564 with geography defined and 10 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

Discussed (preprint)

Latest update: 28 Oct 2020
Publications Copernicus
Download
Short summary
By using climate simulations, we found that both CO2 and black carbon aerosols could reduce low-level cloud cover, which is mainly due to changes in relative humidity, cloud water, dynamics, and stability. Because the impact of cloud on solar radiation is in effect only during daytime, such cloud reduction could enhance solar heating, thereby raising the daily maximum temperature by 10–50 %, varying by region, which has great implications for extreme climate events and socioeconomic activity.
By using climate simulations, we found that both CO2 and black carbon aerosols could reduce...
Citation
Altmetrics
Final-revised paper
Preprint