Articles | Volume 20, issue 13
https://doi.org/10.5194/acp-20-8201-2020
https://doi.org/10.5194/acp-20-8201-2020
Research article
 | 
16 Jul 2020
Research article |  | 16 Jul 2020

Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model

Ryan Schmedding, Quazi Z. Rasool, Yue Zhang, Havala O. T. Pye, Haofei Zhang, Yuzhi Chen, Jason D. Surratt, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Allen H. Goldstein, and William Vizuete

Model code and software

CMAQ (Version 5.2.1) US EPA Office of Research and Development https://doi.org/10.5281/zenodo.1212601

Download
Short summary
Accurate model prediction of aerosol concentrations is a known challenge. It is assumed in many modeling systems that aerosols are in a homogeneously mixed phase state. It has been observed that aerosols do phase separate and can form a highly viscous organic shell with an aqueous core impacting the formation processes of aerosols. This work is a model implementation to determine an aerosol's phase state using glass transition temperature and aerosol composition.
Altmetrics
Final-revised paper
Preprint