Articles | Volume 20, issue 13
https://doi.org/10.5194/acp-20-8003-2020
https://doi.org/10.5194/acp-20-8003-2020
Research article
 | Highlight paper
 | 
10 Jul 2020
Research article | Highlight paper |  | 10 Jul 2020

Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm

Kevin Ohneiser, Albert Ansmann, Holger Baars, Patric Seifert, Boris Barja, Cristofer Jimenez, Martin Radenz, Audrey Teisseire, Athina Floutsi, Moritz Haarig, Andreas Foth, Alexandra Chudnovsky, Ronny Engelmann, Félix Zamorano, Johannes Bühl, and Ulla Wandinger

Viewed

Total article views: 7,047 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
5,681 1,281 85 7,047 72 70
  • HTML: 5,681
  • PDF: 1,281
  • XML: 85
  • Total: 7,047
  • BibTeX: 72
  • EndNote: 70
Views and downloads (calculated since 04 Feb 2020)
Cumulative views and downloads (calculated since 04 Feb 2020)

Viewed (geographical distribution)

Total article views: 7,047 (including HTML, PDF, and XML) Thereof 6,938 with geography defined and 109 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 29 Jun 2024
Download
Short summary
Unique lidar observations of a strong perturbation in stratospheric aerosol conditions in the Southern Hemisphere caused by the extreme Australian bushfires in 2019–2020 are presented. One of the main goals of this article is to provide the CALIPSO and Aeolus spaceborne lidar science teams with basic input parameters (lidar ratios, depolarization ratios) for a trustworthy documentation of this record-breaking event.
Altmetrics
Final-revised paper
Preprint