Research article 10 Jul 2020
Research article | 10 Jul 2020
Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm
Kevin Ohneiser et al.
Viewed
Total article views: 2,303 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Feb 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,721 | 559 | 23 | 2,303 | 26 | 34 |
- HTML: 1,721
- PDF: 559
- XML: 23
- Total: 2,303
- BibTeX: 26
- EndNote: 34
Total article views: 1,610 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Jul 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,297 | 301 | 12 | 1,610 | 17 | 21 |
- HTML: 1,297
- PDF: 301
- XML: 12
- Total: 1,610
- BibTeX: 17
- EndNote: 21
Total article views: 693 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Feb 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
424 | 258 | 11 | 693 | 9 | 13 |
- HTML: 424
- PDF: 258
- XML: 11
- Total: 693
- BibTeX: 9
- EndNote: 13
Viewed (geographical distribution)
Total article views: 2,182 (including HTML, PDF, and XML)
Thereof 2,173 with geography defined
and 9 with unknown origin.
Total article views: 1,582 (including HTML, PDF, and XML)
Thereof 1,576 with geography defined
and 6 with unknown origin.
Total article views: 600 (including HTML, PDF, and XML)
Thereof 597 with geography defined
and 3 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
11 citations as recorded by crossref.
- Classification and source analysis of low-altitude aerosols in Beijing using fluorescence–Mie polarization lidar Y. Zhang et al. 10.1016/j.optcom.2020.126417
- Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020 R. Neale et al. 10.1007/s43630-020-00001-x
- Record-breaking aerosol levels explained by smoke injection into the stratosphere E. Hirsch & I. Koren 10.1126/science.abe1415
- Advection of Biomass Burning Aerosols towards the Southern Hemispheric Mid-Latitude Station of Punta Arenas as Observed with Multiwavelength Polarization Raman Lidar A. Floutsi et al. 10.3390/rs13010138
- Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing C. Kloss et al. 10.5194/acp-21-535-2021
- Is the near-spherical shape the “new black” for smoke? A. Gialitaki et al. 10.5194/acp-20-14005-2020
- Retrieval of stratospheric aerosol size distribution parameters using satellite solar occultation measurements at three wavelengths F. Wrana et al. 10.5194/amt-14-2345-2021
- Statistical aerosol properties associated with fire events from 2002 to 2019 and a case analysis in 2019 over Australia X. Yang et al. 10.5194/acp-21-3833-2021
- Differences in the Evolution of Pyrocumulonimbus and Volcanic Stratospheric Plumes as Observed by CATS and CALIOP Space-Based Lidars K. Christian et al. 10.3390/atmos11101035
- Characterization of Stratospheric Smoke Particles over the Antarctica by Remote Sensing Instruments R. González et al. 10.3390/rs12223769
- TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020 O. Torres et al. 10.5194/amt-13-6789-2020
11 citations as recorded by crossref.
- Classification and source analysis of low-altitude aerosols in Beijing using fluorescence–Mie polarization lidar Y. Zhang et al. 10.1016/j.optcom.2020.126417
- Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020 R. Neale et al. 10.1007/s43630-020-00001-x
- Record-breaking aerosol levels explained by smoke injection into the stratosphere E. Hirsch & I. Koren 10.1126/science.abe1415
- Advection of Biomass Burning Aerosols towards the Southern Hemispheric Mid-Latitude Station of Punta Arenas as Observed with Multiwavelength Polarization Raman Lidar A. Floutsi et al. 10.3390/rs13010138
- Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing C. Kloss et al. 10.5194/acp-21-535-2021
- Is the near-spherical shape the “new black” for smoke? A. Gialitaki et al. 10.5194/acp-20-14005-2020
- Retrieval of stratospheric aerosol size distribution parameters using satellite solar occultation measurements at three wavelengths F. Wrana et al. 10.5194/amt-14-2345-2021
- Statistical aerosol properties associated with fire events from 2002 to 2019 and a case analysis in 2019 over Australia X. Yang et al. 10.5194/acp-21-3833-2021
- Differences in the Evolution of Pyrocumulonimbus and Volcanic Stratospheric Plumes as Observed by CATS and CALIOP Space-Based Lidars K. Christian et al. 10.3390/atmos11101035
- Characterization of Stratospheric Smoke Particles over the Antarctica by Remote Sensing Instruments R. González et al. 10.3390/rs12223769
- TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020 O. Torres et al. 10.5194/amt-13-6789-2020
Latest update: 12 Apr 2021
Short summary
Unique lidar observations of a strong perturbation in stratospheric aerosol conditions in the Southern Hemisphere caused by the extreme Australian bushfires in 2019–2020 are presented. One of the main goals of this article is to provide the CALIPSO and Aeolus spaceborne lidar science teams with basic input parameters (lidar ratios, depolarization ratios) for a trustworthy documentation of this record-breaking event.
Unique lidar observations of a strong perturbation in stratospheric aerosol conditions in the...
Altmetrics
Final-revised paper
Preprint