Articles | Volume 20, issue 11
Atmos. Chem. Phys., 20, 6541–6561, 2020
Atmos. Chem. Phys., 20, 6541–6561, 2020
Research article
05 Jun 2020
Research article | 05 Jun 2020

On the forcings of the unusual Quasi-Biennial Oscillation structure in February 2016

Haiyan Li et al.

Related authors

Twenty-first-century Southern Hemisphere impacts of ozone recovery and climate change from the stratosphere to the ocean
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171,,, 2022
Short summary
Predictability of variable solar–terrestrial coupling
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035,,, 2021
Short summary
The Sun's Role for Decadal Climate Predictability in the North Atlantic
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys. Discuss.,,, 2021
Revised manuscript accepted for ACP
Short summary
Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806,,, 2021
Short summary
Sensitivity of the Southern Hemisphere circumpolar jet response to Antarctic ozone depletion: prescribed versus interactive chemistry
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061,,, 2020
Short summary

Related subject area

Subject: Dynamics | Research Activity: Laboratory Studies | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Dynamical evolution of a minor sudden stratospheric warming in the Southern Hemisphere in 2019
Guangyu Liu, Toshihiko Hirooka, Nawo Eguchi, and Kirstin Krüger
Atmos. Chem. Phys., 22, 3493–3505,,, 2022
Short summary
Local and remote response of ozone to Arctic stratospheric circulation extremes
Hao-Jhe Hong and Thomas Reichler
Atmos. Chem. Phys., 21, 1159–1171,,, 2021
Short summary
The climatology of the Brewer–Dobson circulation and the contribution of gravity waves
Kaoru Sato and Soichiro Hirano
Atmos. Chem. Phys., 19, 4517–4539,,, 2019
Short summary

Cited articles

Andrews, D. G., Holton, R. J., and Leovy, C. B.: Middle Atmosphere Dnamics, International Geophysics, 40, 1–489, 1987. a, b, c
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229,, 2001. a, b, c, d, e
Barton, C. A. and McCormack, J. P.: Origin of the 2016 QBO Disruption and Its Relationship to Extreme El Niño Events, Geophys. Res. Lett., 44, 11150–11157,, 2017. a, b, c
Blume, C., Matthes, K., and Horenko, I.: Supervised Learning Approaches to Classify Sudden Stratospheric Warming Events, J. Atmos. Sci., 69, 1824–1840,, 2012. a
Calvo, N., Garcia, R. R., Randel, W. J., and Marsh, D. R.: Dynamical Mechanism for the Increase in Tropical Upwelling in the Lowermost Tropical Stratosphere during Warm ENSO Events, J. Atmos. Sci., 67, 2331–2340,, 2010. a
Short summary
The QBO westerly phase was reversed by an unexpected easterly jet near 40 hPa and the westerly zonal wind lasted an unusually long time at 20 hPa during winter 2015/16. We find that quasi-stationary Rossby wave W1 and faster Rossby wave W2 propagating from the northern extratropics and a locally generated Rossby wave W3 were important contributors to the easterly jet at 40 hPa. Our results suggest that the unusual zonal wind structure at 20 hPa could be caused by enhanced Kelvin wave activity.
Final-revised paper