Articles | Volume 20, issue 6
https://doi.org/10.5194/acp-20-3669-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-3669-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Determination of binary gas-phase diffusion coefficients of unstable and adsorbing atmospheric trace gases at low temperature – arrested flow and twin tube method
Institut für Physikalische und Theoretische Chemie, University of Bonn, Bonn, Germany
now at: Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde/Chirurgie, University of Bonn, Bonn, Germany
Torsten Carstens
Institut für Physikalische und Theoretische Chemie, University of Bonn, Bonn, Germany
Institut für Meterologie und Klimaforschung, Karlsruher Institut für Technologie, Karlsruhe, Germany
Dirk Hupperich
Institut für Physikalische und Theoretische Chemie, University of Bonn, Bonn, Germany
Silke Schweighoefer
Institut für Physikalische und Theoretische Chemie, University of Bonn, Bonn, Germany
now at: UP GmbH, Ibbenbüren, Germany
Ulrich Schurath
Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany
Related authors
Stefan Langenberg and Ulrich Schurath
Atmos. Chem. Phys., 18, 7527–7537, https://doi.org/10.5194/acp-18-7527-2018, https://doi.org/10.5194/acp-18-7527-2018, 2018
Short summary
Short summary
The processes of the interaction of sulfur dioxide with water ice are still not fully understood. We demonstrate how the well established technique of gas chromatography can be used to investigate interactions of sulfur dioxide with a crystalline ice film deposited in a fused silica wide bore column. Our experiments reveal that the interaction is a combination of three processes: (i) physisorption, (ii) dissociative reaction with water and (iii) slow uptake into bulk ice.
Stefan Langenberg and Ulrich Schurath
Atmos. Chem. Phys., 18, 7527–7537, https://doi.org/10.5194/acp-18-7527-2018, https://doi.org/10.5194/acp-18-7527-2018, 2018
Short summary
Short summary
The processes of the interaction of sulfur dioxide with water ice are still not fully understood. We demonstrate how the well established technique of gas chromatography can be used to investigate interactions of sulfur dioxide with a crystalline ice film deposited in a fused silica wide bore column. Our experiments reveal that the interaction is a combination of three processes: (i) physisorption, (ii) dissociative reaction with water and (iii) slow uptake into bulk ice.
Cited articles
Anderson, L. C. and Fahey, D. W.:
Studies with nitryl hypochlorite: thermal dissociation rate and catalytic conversion to nitric oxide using an NO/O3 chemiluminescence detector,
J. Phys. Chem.,
94, 644–652, https://doi.org/10.1021/j100365a027, 1990. a
Becker, K., Heindrichs, A., and Schurath, U.:
Ein transportables Gerät zur Kalibrierung von Ozonanalysatoren durch Messung der optischen Absorption,
Staub Reinhalt. Luft,
35, 326–329, 1975. a
Brokaw, R. S. and Svehla, R. A.:
Viscosity and Thermal Conductivity of the N2O4 ⇌ 2 NO2 System,
J. Chem. Phys.,
44, 4643–4645, https://doi.org/10.1063/1.1726692, 1966. a, b
Cantrell, C. A., Davidson, J. A., McDaniel, A. H., Shetter, R. E., and Calvert, J. G.:
Infrared absorption cross sections for N2O5,
Chem. Phys. Lett.,
148, 358–363, https://doi.org/10.1016/0009-2614(88)87288-9, 1988. a
Chambers, F. S. and Sherwood, T. K.:
Absorption of Nitrogen Dioxide by Aqueous Solutions,
Ind. Eng. Chem.,
29, 1415–1422, https://doi.org/10.1021/ie50336a022, 1937. a
Chen, N. and Othmer, D.:
New generalized equation for gas diffusion coefficient,
J. Chem. Eng. Data,
7, 37–41, https://doi.org/10.1021/je60012a011, 1962. a
Cowie, M. and Watts, H.:
Diffusion of Methane and Chloromethanes in Air,
Can. J. Chem.,
49, 74–77, https://doi.org/10.1139/v71-011, 1971. a
Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., and Worsnop, D. R.:
Mass Accommodation and Chemical Reactions at Gas–Liquid Interfaces,
Chem. Rev.,
106, 1323–1354, https://doi.org/10.1021/cr040366k, pMID: 16608183, 2006. a
Davidson, J., Cantrell, C., Shetter, R., McDaniel, A., and Calvert, J.:
Absolute Infrared Absorption Cross Sections for ClONO2 at 296 and 223 K,
J. Geophys. Res.,
92, 10921–10925, https://doi.org/10.1029/JD092iD09p10921, 1987. a, b
Davidson, J. A., Viggiano, A. A., Howard, C. J., Dotan, I., Fehsenfeld, F. C., Albritton, D. L., and Ferguson, E. E.:
Rate constants for the reactions of , , NO+, H3O+, , , and halide ions with N2O5 at 300 K,
J. Chem. Phys.,
68, 2085–2087, https://doi.org/10.1063/1.436032, 1978. a
Dunlop, P. J. and Bignell, C.:
Diffusion and thermal diffusion in binary mixtures of methane with noble gases and of argon with krypton,
Physica A,
145, 584–596, https://doi.org/10.1016/0378-4371(87)90009-4, 1987. a, b, c, d
Dunlop, P. J. and Bignell, C. M.:
The temperature and concentration dependencies of diffusion coefficients of some helium–hydrocarbon and helium–fluorocarbon systems,
J. Chem. Phys.,
93, 2701–2703, https://doi.org/10.1063/1.458908, 1990. a, b, c
Dunlop, P. J. and Bignell, C. M.:
The Temperature and Concentration Dependences of Diffusion Coefficients of the Systems Ne–O2, Kr–O2, Xe–O2 and He–NO,
Ber. Bunsen. Phys. Chem.,
96, 1847–1848, https://doi.org/10.1002/bbpc.19920961211, 1992. a, b, c
Eller, A. S. D. and Sparks, J. P.:
Predicting leaf-level fluxes of O3 and NO2: the relative roles of diffusion and biochemical processes,
Plant Cell Environ.,
29, 1742–1750, https://doi.org/10.1111/j.1365-3040.2006.01546.x, 2006. a
Fahey, D., Eubank, C., Hübler, G., and Fehsenfeld, F.:
A calibrated source of N2O5,
Atmos. Environ. (1967),
19, 1883–1890, https://doi.org/10.1016/0004-6981(85)90013-7, 1985. a
Fall, R. and Monson, R. K.:
Isoprene Emission Rate and Intercellular Isoprene Concentration as Influenced by Stomatal Distribution and Conductance,
Plant Physiol.,
100, 987–992, https://doi.org/10.1104/pp.100.2.987, 1992. a
Fuller, E. N., Schettler, P. D., and Giddings, J. C.:
New Method for Prediction of Binary Gas-phase Diffusion Coefficients,
Ind. Eng. Chem.,
58, 18–27, https://doi.org/10.1021/ie50677a007, 1966. a, b
Gu, W., Cheng, P., and Tang, M.:
Compilation and evaluation of gas phase diffusion coefficients of halogenated organic compounds,
Roy. Soc. Open Sci.,
5, 171936, https://doi.org/10.1098/rsos.171936, 2018. a
Ivanov, A. V., Trakhtenberg, S., Bertram, A. K., Gershenzon, Y. M., and Molina, M. J.:
OH, HO2, and Ozone Gaseous Diffusion Coefficients,
J. Phys. Chem. A,
111, 1632–1637, https://doi.org/10.1021/jp066558w, pMID: 17298040, 2007. a
Kirchner, W., Welter, F., Bongartz, A., Kames, J., Schweighoefer, S., and Schurath, U.:
Trace gas exchange at the air/water interface: Measurements of mass accommodation coefficients,
J. Atmos. Chem.,
10, 427–449, https://doi.org/10.1007/BF00115784, 1990. a
Knox, J. H. and McLaren, L.:
A New Gas Chromatographic Method for Measuring Gaseous Diffusion Coefficients and Obstructive Factors,
Anal. Chem.,
36, 1477–1482, https://doi.org/10.1021/ac60214a017, 1964. a
Kolb, C. E., Cox, R. A., Abbatt, J. P. D., Ammann, M., Davis, E. J., Donaldson, D. J., Garrett, B. C., George, C., Griffiths, P. T., Hanson, D. R., Kulmala, M., McFiggans, G., Pöschl, U., Riipinen, I., Rossi, M. J., Rudich, Y., Wagner, P. E., Winkler, P. M., Worsnop, D. R., and O' Dowd, C. D.:
An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds,
Atmos. Chem. Phys.,
10, 10561–10605, https://doi.org/10.5194/acp-10-10561-2010, 2010. a
Laisk, A., Kull, O., and Moldau, H.:
Ozone Concentration in Leaf Intercellular Air Spaces Is Close to Zero,
Plant Physiol.,
90, 1163–1167, https://doi.org/10.1104/pp.90.3.1163, 1989. a
Langenberg, S., Proksch, V., and Schurath, U.:
Solubilities and Diffusion of trace gases in cold sulfuric acid films,
Atmos. Environ.,
32, 3129–3137, https://doi.org/10.1016/S1352-2310(97)00490-1, 1998. a
Marić, D., Hans, W., and Schurath, U.:
Measurements of N2O photolysis coefficients in the stratosphere: Comparison with model calculations,
J. Atmos. Chem.,
8, 19–40, https://doi.org/10.1007/BF00053814, 1989. a
Marrero, T. R. and Mason, E. A.:
Gaseous Diffusion Coefficients,
J. Phys. Chem. Ref. Data,
1, 3–118, https://doi.org/10.1063/1.3253094, 1972. a, b, c
Massman, W.:
A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP,
Atmos. Environ.,
32, 1111–1127, https://doi.org/10.1016/S1352-2310(97)00391-9, 1998. a, b, c, d
McCoy, B. J. and Moffat, A. J.:
Arrested-flow Chromatographic Measurement of Gaseous Diffusion Coefficients,
Chem. Eng. Commun.,
47, 219–224, https://doi.org/10.1080/00986448608911765, 1986. a, b
McDaniel, A. H., Davidson, J. A., Cantrell, C. A., Shetter, R. E., and Calvert, J. G.:
Enthalpies of formation of dinitrogen pentoxide and the nitrate free radical,
J. Phys. Chem.,
92, 4172–4175, https://doi.org/10.1021/j100325a035, 1988. a
Mueller, C. R. and Cahill, R. W.:
Mass Spectrometric Measurement of Diffusion Coefficients,
J. Chem. Phys.,
40, 651–654, https://doi.org/10.1063/1.1725184, 1964. a
Müller, B. and Heal, M. R.:
The mass accommodation coefficient of ozone on an aqueous surface,
Phys. Chem. Chem. Phys.,
4, 3365–3369, https://doi.org/10.1039/b202491h, 2002. a
Neufeld, P. D., Janzen, A. R., and Aziz, R. A.:
Empirical Equations to Calculate 16 of the Transport Collision Integrals for the Lennard-Jones (12–6) Potentials,
J. Chem. Phys.,
57, 1100–1102, https://doi.org/10.1063/1.1678363, 1972. a
NIST:
JANAF Thermochemical Tables,
in:
NIST Standard Reference Database, vol. 13, https://doi.org/10.18434/T42S31, 1998. a
Orphal, J., Morillon-Chapey, M., Diallo, A., and Guelachvili, G.:
High-Resolution Infrared Spectra and Harmonic Force Field of Chlorine Nitrate,
J. Phys. Chem. A,
101, 1062–1067, https://doi.org/10.1021/jp9619595, 1997. a
Patrick, R. and Golden, D. M.:
Third-order rate constants of atmospheric importance,
Int. J. Chem. Kinet.,
15, 1189–1227, https://doi.org/10.1002/kin.550151107, 1983. a, b, c, d
R Core Team:
R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria,
http://www.R-project.org/ (last access: 18 February 2020), 2017. a
Schmeisser, M., Ruff, J. K., and Lustig, M.:
Inorganic Syntheses,
chap. Chlorine(1) Nitrate,
Wiley-Blackwell, 127–130, https://doi.org/10.1002/9780470132401.ch34, 1967. a
Schurath, U., Speuser, W., and Schmidt, R.:
Principle and Application of a Fast Sensor for Atmospheric Ozone,
Fresen. J. Anal. Chem.,
340, 544, https://doi.org/10.1007/bf00322426, 1991. a
Sviridenko, Y. F., Makhin, V. A., and Shandorov, G. S.:
Determining the diffusivity of nitrogen tetroxide,
J. Eng. Phys.,
24, 351–353, https://doi.org/10.1007/bf00847664, 1973. a, b
Tang, M., Keeble, J., Telford, P. J., Pope, F. D., Braesicke, P., Griffiths, P. T., Abraham, N. L., McGregor, J., Watson, I. M., Cox, R. A., Pyle, J. A., and Kalberer, M.:
Heterogeneous reaction of ClONO2 with TiO2 and SiO2 aerosol particles: implications for stratospheric particle injection for climate engineering,
Atmos. Chem. Phys.,
16, 15397–15412, https://doi.org/10.5194/acp-16-15397-2016, 2016. a
Tang, M. J., Cox, R. A., and Kalberer, M.:
Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds,
Atmos. Chem. Phys.,
14, 9233–9247, https://doi.org/10.5194/acp-14-9233-2014, 2014a. a, b, c
Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L., Archibald, A. T., Braesicke, P., Pyle, J. A., McGregor, J., Watson, I. M., Cox, R. A., and Kalberer, M.:
Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection,
Atmos. Chem. Phys.,
14, 6035–6048, https://doi.org/10.5194/acp-14-6035-2014, 2014b.
a
Tang, M. J., Shiraiwa, M., Pöschl, U., Cox, R. A., and Kalberer, M.:
Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations,
Atmos. Chem. Phys.,
15, 5585–5598, https://doi.org/10.5194/acp-15-5585-2015, 2015. a, b, c, d, e
Taylor, G. I.:
Dispersion of soluble matter in solvent flowing slowly through a tube,
P. Roy. Soc. Lond. A,
219, 186–203, https://doi.org/10.1098/rspa.1953.0139, 1953. a
Taylor, G. I.:
Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion,
P. Roy. Soc. Lond. A,
225, 473–477, https://doi.org/10.1098/rspa.1954.0216, 1954. a
Wagner, C., Hanisch, F., Holmes, N., de Coninck, H., Schuster, G., and Crowley, J. N.:
The interaction of N2O5 with mineral dust: aerosol flow tube and Knudsen reactor studies,
Atmos. Chem. Phys.,
8, 91–109, https://doi.org/10.5194/acp-8-91-2008, 2008. a, b
Short summary
Gas-phase diffusion is the first step for all heterogeneous reactions under atmospheric conditions. Therefore, we have used two complementary methods for the measurement of diffusion coefficients in the temperature range of 200–300 K: the arrested flow method is best suited for unstable gases (ozone, dinitrogen pentoxide, chlorine nitrate), and the twin tube method is best suited for stable but adsorbing trace gases (nitrogen dioxide, dinitrogen tetroxide).
Gas-phase diffusion is the first step for all heterogeneous reactions under atmospheric...
Altmetrics
Final-revised paper
Preprint